Piezoelectric films of poly(vinylidenedifluoride-trifluoroethylene) (P(VDF-TrFE)) and of P(VDF-TrFE)/boron nitride nanotubes (BNNTs) were prepared by cast-annealing and used for SaOS-2 osteoblast-like cell culture. Films were characterized in terms of surface and bulk features, and composite films demonstrated enhanced piezoresponse compared to plain polymeric films (d increased by ~80%). Osteogenic differentiation was evaluated in terms of calcium deposition, collagen I secretion, and transcriptional levels of marker genes (Alpl, Col1a1, Ibsp, and Sparc) in cells either exposed or not to ultrasounds (US); finally, a numerical model suggested that the induced voltage (~20-60 mV) is suitable for cell stimulation. Although preliminary, our results are extremely promising and encourage the use of piezoelectric P(VDF-TrFE)/BNNT films in bone tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2017.05.006 | DOI Listing |
Adv Sci (Weinh)
December 2024
CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, H91W2TY, Ireland.
Preserving the function of human tendon-derived cells (hTDCs) during cell expansion is a significant challenge in regenerative medicine. In this study, a non-genetic approach is introduced to control the differentiation of hTDCs using a newly developed tympanic bioreactor. The system mimics the functionality of the human tympanic membrane, employing a piezoelectrically tuned acoustic diaphragm made of polyvinylidene fluoride-co-trifluoroethylene and boron nitride nanotubes.
View Article and Find Full Text PDFFront Chem
May 2019
CURAM, SFI Centre for Research in Medical Devices, National University of Ireland Galway, Galway, Ireland.
Analysis of the cellular response to piezoelectric materials has been driven by the discovery that many tissue components exhibit piezoelectric behavior . In particular, polyvinylidene fluoride and the trifluoroethylene co-polymer (PVDF-TrFE) have been identified as promising piezo and ferroelectric materials with applications in energy harvesting and biosensor devices. Critically, the modulation of the structural and crystalline properties of PVDF-TrFE through annealing processes and the addition of particulate or fibrous fillers has been shown to modulate significantly the materials electromechanical properties.
View Article and Find Full Text PDFNanomedicine
October 2018
Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera (Pisa), Italy; Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Torino, Italy. Electronic address:
Piezoelectric films of poly(vinylidenedifluoride-trifluoroethylene) (P(VDF-TrFE)) and of P(VDF-TrFE)/boron nitride nanotubes (BNNTs) were prepared by cast-annealing and used for SaOS-2 osteoblast-like cell culture. Films were characterized in terms of surface and bulk features, and composite films demonstrated enhanced piezoresponse compared to plain polymeric films (d increased by ~80%). Osteogenic differentiation was evaluated in terms of calcium deposition, collagen I secretion, and transcriptional levels of marker genes (Alpl, Col1a1, Ibsp, and Sparc) in cells either exposed or not to ultrasounds (US); finally, a numerical model suggested that the induced voltage (~20-60 mV) is suitable for cell stimulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!