Structural Insight into the Core of CAD, the Multifunctional Protein Leading De Novo Pyrimidine Biosynthesis.

Structure

Structural Bases of Genome Integrity Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro, 3, Madrid 28029, Spain; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera, 1, Madrid 28049, Spain. Electronic address:

Published: June 2017

CAD, the multifunctional protein initiating and controlling de novo biosynthesis of pyrimidines in animals, self-assembles into ∼1.5 MDa hexamers. The structures of the dihydroorotase (DHO) and aspartate transcarbamoylase (ATC) domains of human CAD have been previously determined, but we lack information on how these domains associate and interact with the rest of CAD forming a multienzymatic unit. Here, we prove that a construct covering human DHO and ATC oligomerizes as a dimer of trimers and that this arrangement is conserved in CAD-like from fungi, which holds an inactive DHO-like domain. The crystal structures of the ATC trimer and DHO-like dimer from the fungus Chaetomium thermophilum confirm the similarity with the human CAD homologs. These results demonstrate that, despite being inactive, the fungal DHO-like domain has a conserved structural function. We propose a model that sets the DHO and ATC complex as the central element in the architecture of CAD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2017.04.012DOI Listing

Publication Analysis

Top Keywords

cad multifunctional
8
multifunctional protein
8
human cad
8
dho atc
8
dho-like domain
8
cad
6
structural insight
4
insight core
4
core cad
4
protein leading
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!