Reprint of: The non-mammalian MIF superfamily.

Immunobiology

Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium. Electronic address:

Published: June 2017

Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule. Therefore, it is not surprising that mif-like genes also have been found across a range of different organisms including bacteria, plants, protozoa, helminths, molluscs, arthropods, fish, amphibians and birds. While Genebank analysis identifying mif-like genes across species is extensive, contained herein is an overview of the non-mammalian MIF-like proteins that have been most well studied experimentally. For many of these organisms, MIF contributes to an innate defense system or plays a role in development. For parasitic organisms however, MIF appears to function as a virulence factor aiding in the establishment or persistence of infection by modulating the host immune response. Consequently, a combined targeting of both parasitic and host MIF could lead to more effective treatment strategies for parasitic diseases of socioeconomic importance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.imbio.2017.05.004DOI Listing

Publication Analysis

Top Keywords

mif-like genes
8
organisms mif
8
mif
6
reprint non-mammalian
4
non-mammalian mif
4
mif superfamily
4
superfamily macrophage
4
macrophage migration
4
migration inhibitory
4
inhibitory factor
4

Similar Publications

Ascidians are marine invertebrate chordates belonging to the earliest branch (Tunicata) in the chordate phylum, therefore, they are of interest for studying the evolution of immune systems. Due to the known genome, the non-colonial Ciona robusta, previously considered to be C. intestinalis type A, is a model species for the study of inflammatory response.

View Article and Find Full Text PDF

Plant-parasitic nematodes secrete a series of effectors to promote parasitism by modulating host immunity, but the detailed molecular mechanism is ambiguous. Animal parasites secrete macrophage migration inhibitory factor (MIF)-like proteins for evasion of host immune systems, in which their biochemical activities play essential roles. Previous research demonstrated that MiMIF-2 effector was secreted by and modulated host immunity by interacting with annexins.

View Article and Find Full Text PDF

Expansion and loss events characterized the occurrence of MIF-like genes in bivalves.

Fish Shellfish Immunol

October 2019

Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy. Electronic address:

Macrophage migration inhibitory factor (MIF) dynamically connects innate and adaptive immune systems in vertebrate animals, allowing highly orchestrated systemic responses to various insults. The occurrence of MIF-like genes in non-vertebrate organisms suggests its origin from an ancestral metazoan gene, whose function is still a matter of debate. In the present work, by analyzing available genomic and transcriptomic data from bivalve mollusks, we identified 137 MIF-like sequences, which were classified into three types, based on phylogeny and conservation of key residues: MIF, D-DT, and the lineage-specific type MDL.

View Article and Find Full Text PDF

Reprint of: The non-mammalian MIF superfamily.

Immunobiology

June 2017

Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB-UGent Center for Inflammation Research, Ghent, Belgium. Electronic address:

Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule.

View Article and Find Full Text PDF

The non-mammalian MIF superfamily.

Immunobiology

March 2017

Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium; Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Gent, Belgium. Electronic address:

Macrophage migration inhibitory factor (MIF) was first described as a cytokine 50 years ago, and emerged in mammals as a pleiotropic protein with pro-inflammatory, chemotactic, and growth-promoting activities. In addition, MIF has gained substantial attention as a pivotal upstream mediator of innate and adaptive immune responses and with pathologic roles in several diseases. Of less importance in mammals is an intrinsic but non-physiologic enzymatic activity that points to MIF's evolution from an ancient defense molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!