Salamanders have evolved a wide variety of antipredator mechanisms and behavior patterns, including toxins and noxious or adhesive skin secretions. The high bonding strength of the natural bioadhesives makes these substances interesting for biomimetic research and applications in industrial and medical sectors. Secretions of toxic species may help to understand the direct effect of harmful substances on the cellular level. In the present study, the biocompatibility of adhesive secretions from four salamander species (Plethodon shermani, Plethodon glutinosus, Ambystoma maculatum, Ambystoma opacum) were analyzed using the MTT assay in cell culture and evaluated against toxic secretions of Pleurodeles waltl, Triturus carnifex, Pseudotriton ruber, Tylototriton verrucosus, and Salamandra salamandra. Their effect on cells was tested in direct contact (direct culture) or under the influence of the extract (indirect exposure) in accordance with the protocol of the international standard norm ISO 10993-5. Human dermal fibroblasts (NHDF), umbilical vein endothelial cells (HUVEC), and articular chondrocytes (HAC), as well as the cell lines C2C12 and L929 were used in both culture types. While the adhesive secretions from Plethodon shermani are cytocompatible and those of Ambystoma opacum are even advantageous, those of Plethodon glutinosus and Ambystoma maculatum appear to be cytotoxic to NDHF and HUVEC. Toxic secretions from Salamandra salamandra exhibited harmful effects on all cell types. Pseudotriton ruber and Triturus carnifex secretions affected certain cell types marginally; those from Pleurodeles waltl and Tylototriton verrucosus were generally well tolerated. The study shows for the first time the effect of salamander secretions on the viability of different cell types in culture. Two adhesive secretions appeared to be cell compatible and are therefore promising candidates for future investigations in the field of medical bioadhesives. Among the toxic secretions tested, only two of the five had a harmful effect on cells, indicating different cell toxicity mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2017.05.021 | DOI Listing |
PeerJ
January 2025
Department of Urology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
Background: Plasma membrane tension-related genes (MTRGs) are known to play a crucial role in tumor progression by influencing cell migration and adhesion. However, their specific mechanisms in bladder cancer (BLCA) remain unclear.
Methods: Transcriptomic, clinical and mutation data from BLCA patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.
Proteomics
January 2025
Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
Cell surface proteins (surfaceome) represent key signalling and interaction molecules for therapeutic targeting, biomarker profiling and cellular phenotyping in physiological and pathological states. Here, we employed coronary artery perfusion with membrane-impermeant biotin to label and capture the surface-accessible proteome in the neo-native (intact) heart. Using quantitative proteomics, we identified 701 heart cell surfaceome accessible by the coronary artery, including receptors, cell surface enzymes, adhesion and junctional molecules.
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, Madison, WI.
Ca is a key nutrient for fruit quality due to its role in bonding with pectin in the cell wall, providing strength through cell-to-cell adhesion, thus increasing fruit firmness and extending post-harvest life. However, Ca accumulation is mostly limited to the initial stages of fruit development due to anatomical and physiological changes that occur as fruits develop. The objective of this study was to evaluate fruit transpiration, cuticle thickness, and pedicel vessel changes during cranberry fruit development and the effect these parameters might have on Ca translocation.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.
Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.
Cell Commun Signal
January 2025
School of Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Endothelial-mesenchymal transition (EndMT) is defined as an important process of cellular differentiation by which endothelial cells (ECs) are prone to lose their characteristics and transform into mesenchymal cells. During EndMT, reduced expression of endothelial adhesion molecules disrupts intercellular adhesion, triggering cytoskeletal reorganization and mesenchymal transition. Numerous studies have proved that EndMT is a multifaceted biological event driven primarily by cytokines such as TGF-β, TNF-α, and IL-1β, alongside signaling pathways like WNT, Smad, MEK-ERK, and Notch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!