This study investigated the effect of exopolysaccharide (EPS) produced by Lactobacillus plantarum YW11 on the oxidative status and gut microbiota in an aging mouse model induced with d-galactose. The in vitro assay of the antioxidant activity of the EPS showed concentration-dependent (0.25-3.0 mg/mL) activities. At 3.0 mg/mL, the EPS reached the highest scavenging activities with half maximal inhibitory concentration values against hydroxyl radicals at 75.10% and 1.22 mg/mL, superoxide anion at 62.71% and 1.54 mg/mL, 2, 2-diphenyl-1-picrylhydrazyl at 35.11% and 0.63 mg/mL, and the maximal chelating rate on ferrous ion and the half-maximal chelating concentration of the EPS at 41.09% and 1.07 mg/mL, respectively. High doses of EPS (50 mg/kg per day) effectively relieved the oxidative stress in the aging mice with increased levels of glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity in mice serum by 21.55, 33.14, 61.09, and 38.18%, respectively, and decreased malondialdehyde level from 11.69 to 5.89 mmol/mL compared with those in the untreated aging mice model. The analysis of pyrosequencing sequence data from the gut microbiota revealed that the EPS could recover the microbiota diversity and phylotypes decreased or eliminated by the d-galactose treatment. The EPS could selectively decrease the abundance of Flexispira (37.5 fold), and increase the abundance of Blautia (36.5 fold) and Butyricicoccus (9.5 fold), which correspondingly decreased the content of nitrogen oxides to 9.87% and increased the content of short-chain fatty acids by 2.23 fold, thereby improving the oxidative and health conditions of the host intestinal tract. Further correlation analysis of core-microbiota variation induced by different treatments showed a strong correlation with oxidative phenotypes [catalase, goodness of prediction (Q) = 0.49; total antioxidant capacity, Q = 0.45; nitrogen oxides, Q = 0.67; short-chain fatty acids, Q = 0.55]. The fermented milk with L. plantarum YW11 containing EPS also showed favorable antioxidant and gut microbiota regulating activities. The present finding provided new insights into the functional mechanism of probiotics bioactivity.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2016-12480DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
plantarum yw11
12
status gut
8
aging mouse
8
mouse model
8
produced lactobacillus
8
lactobacillus plantarum
8
eps
8
aging mice
8
total antioxidant
8

Similar Publications

Heat stress (HS) is an impactful condition in ruminants that negatively affects their physiological and rumen microbial composition. However, a fundamental understanding of metabolomic and metataxonomic mechanisms in goats under HS conditions is lacking. Here, we analyzed the rumen metabolomics, metataxonomics, and serum metabolomics of goats (n = 10, body weight: 41.

View Article and Find Full Text PDF

Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice.

Commun Biol

December 2024

Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.

High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage.

View Article and Find Full Text PDF

The gut microbiota alterations interact with the pathogenesis and progression of chronic kidney disease (CKD). Probiotics have received wide attention as a potential management in CKD. We investigated the effects of Lactobacillus paracasei N1115 (LP N1115) on intestinal microbiota and related short-chain fatty acids (SCFAs) in end stage kidney disease patients on peritoneal dialysis (PD) in a single-center, prospective, randomized, double-blind, placebo-controlled study.

View Article and Find Full Text PDF

Profiling and comprehensive analysis of microbiome and ARGs of nurses and nursing workers in China: a cross-sectional study.

Sci Rep

December 2024

Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.

Hospital-acquired infection (HAI) and antimicrobial resistance (AMR) represent major challenges in healthcare system. Despite numerous studies have assessed environmental and patient samples, very few studies have explored the microbiome and resistome profiles of medical staff including nursing workers. This cross-sectional study was performed in a tertiary hospital in China and involved 25 nurses (NSs), 25 nursing workers (NWs), and 55 non-medical control (NC).

View Article and Find Full Text PDF

Short-chain fatty acids play a key role in antibody response to SARS-CoV-2 infection in people living with HIV.

Sci Rep

December 2024

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.

High SARS-CoV-2-specific antibody levels can protect against SARS-CoV-2 reinfection. The gut microbiome can affect a host's immune response. However, its role in the antibody response to SARS-CoV-2 in people living with HIV (PLWH) remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!