Members of the genus Limonium are widely used as medicinal herbs due to their health-promoting effects, such as an ability to improve blood circulation by inhibiting angiotensin I converting enzyme (ACE). While the potential of L. michelsonii Lincz. (a medicinal plant endemic to Kazakhstan) to inhibit ACE has been demonstrated, the inhibitory activities of its secondary metabolites have not been explored. In this work, the principal phenolic compounds (1-20) among these metabolites were isolated to determine the components responsible for ACE inhibition. The natural abundances of the active constituents within the target plant were characterized by UPLC-Q-TOF/MS analysis. All of the isolated compounds except for gallates 10-12 were found to significantly inhibit ACE, with IC values of between 7.1 and 138.4 μM. Unexpectedly, the flavonol glycosides 16-20 were observed to be more potent than the corresponding aglycones 4 and 5. For example, quercetin (4) had IC = 30.3 μM, whereas its glycosides (16, 17) had IC = 10.2 and 14.5 μM, respectively. A similar trend was observed for myricetin (5) and its glycosides (18-20). In a kinetic study, the flavonols 3-5 and 16-20 and the dihydroflavonols 8 and 9 behaved as competitive inhibitors, whereas other flavones (1, 2, 13-15) and flavanones (6, 7) performed noncompetitive inhibition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11418-017-1095-4DOI Listing

Publication Analysis

Top Keywords

angiotensin converting
8
converting enzyme
8
enzyme ace
8
michelsonii lincz
8
inhibit ace
8
ace
5
phytochemical profile
4
profile angiotensin
4
ace inhibitory
4
inhibitory activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!