Objective: To investigate microwave-induced morphological and functional injury of natural killer (NK) cells and uncover their mechanisms.

Methods: NK-92 cells were exposed to 10, 30, and 50 mW/cm2 microwaves for 5 min. Ultrastructural changes, cellular apoptosis and cell cycle regulation were detected at 1 h and 24 h after exposure. Cytotoxic activity was assayed at 1 h after exposure, while perforin and NKG2D expression were detected at 1 h, 6 h, and 12 h after exposure. To clarify the mechanisms, phosphorylated ERK (p-ERK) was detected at 1 h after exposure. Moreover, microwave-induced cellular apoptosis and cell cycle regulation were analyzed after blockade of ERK signaling by using U0126.

Results: Microwave-induced morphological and ultrastructural injury, dose-dependent apoptosis (P < 0.001) and cell cycle arrest (P < 0.001) were detected at 1 h after microwave exposure. Moreover, significant apoptosis was still detected at 24 h after 50 mW/cm2 microwave exposure (P < 0.01). In the 30 mW/cm2 microwave exposure model, microwaves impaired the cytotoxic activity of NK-92 cells at 1 h and down regulated perforin protein both at 1 h and 6 h after exposure (P < 0.05). Furthermore, p-ERK was down regulated at 1 h after exposure (P < 0.05), while ERK blockade significantly promoted microwave-induced apoptosis (P < 0.05) and downregulation of perforin (P < 0.01).

Conclusion: Microwave dose-dependently induced morphological and functional injury in NK-92 cells, possibly through ERK-mediated regulation of apoptosis and perforin expression.

Download full-text PDF

Source
http://dx.doi.org/10.3967/bes2017.043DOI Listing

Publication Analysis

Top Keywords

nk-92 cells
12
cell cycle
12
detected exposure
12
microwave exposure
12
exposure
9
microwave-induced apoptosis
8
microwave-induced morphological
8
morphological functional
8
functional injury
8
cellular apoptosis
8

Similar Publications

Objective: Small cell lung cancer (SCLC) is commonly recognized as the most fatal lung cancer type. Despite substantial advances in immune checkpoint blockade therapies for treating solid cancers, their benefits are limited to a minority of patients with SCLC. In the present study, novel indicators for predicting the outcomes and molecular targets for SCLC treatment were elucidated.

View Article and Find Full Text PDF

Lung adenocarcinoma (LUAD) stands out as a prevalent malignant tumor necessitating innovative strategies to enhance therapeutic outcomes. Akkermansia muciniphila (AKK) has emerged as intricately linked to tumor immunotherapy, yet its impact on natural killer (NK) cells, which play a crucial role in immunotherapy, remains unclear. This study aims to investigate the effects of AKK outer membrane proteins on NK cells in LUAD and elucidate potential associated molecular mechanisms.

View Article and Find Full Text PDF

Advances in Induced Pluripotent Stem Cell-Derived Natural Killer Cell Therapy.

Cells

November 2024

CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China.

Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system capable of killing virus-infected cells and/or cancer cells. The commonly used NK cells for therapeutic applications include primary NK cells and immortalized NK cell lines. However, primary NK cell therapy faces limitations due to its restricted proliferation capacity and challenges in stable storage.

View Article and Find Full Text PDF
Article Synopsis
  • - Many monoclonal antibody therapies for tumors work by activating natural killer (NK) cells through a receptor called CD16, enhancing the immune response against cancer cells.
  • - A specific variant of CD16 called L48-H improves NK cell effectiveness, allowing them to kill tumor cells more efficiently by increasing their binding affinity and speeding up the engagement with the cancer cells.
  • - The L48-H variant leads to better communication (or "immunological synapse") between NK cells and tumor cells, resulting in stronger signaling and faster response, making it a promising enhancement for cancer treatments.
View Article and Find Full Text PDF

Purpose: Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells.

Procedures: Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!