Background: The role of axillary lymph node dissection (ALND) has increasingly been called into question among patients with positive sentinel lymph nodes. Two recent trials have failed to show a survival difference in sentinel node-positive breast cancer patients who were randomized either to undergo completion ALND or not. Neither of the trials, however, included breast cancer patients undergoing mastectomy or those with tumors larger than 5 cm, and power was debatable to show a small survival difference.
Methods: The prospective randomized SENOMAC trial includes clinically node-negative breast cancer patients with up to two macrometastases in their sentinel lymph node biopsy. Patients with T1-T3 tumors are eligible as well as patients prior to systemic neoadjuvant therapy. Both breast-conserving surgery and mastectomy, with or without breast reconstruction, are eligible interventions. Patients are randomized 1:1 to either undergo completion ALND or not by a web-based randomization tool. This trial is designed as a non-inferiority study with breast cancer-specific survival at 5 years as the primary endpoint. Target accrual is 3500 patients to achieve 80% power in being able to detect a potential 2.5% deterioration of the breast cancer-specific 5-year survival rate. Follow-up is by annual clinical examination and mammography during 5 years, and additional controls after 10 and 15 years. Secondary endpoints such as arm morbidity and health-related quality of life are measured by questionnaires at 1, 3 and 5 years.
Discussion: Several large subgroups of breast cancer patients, such as patients undergoing mastectomy or those with larger tumors, have not been included in key trials; however, the use of ALND is being questioned even in these groups without the support of high-quality evidence. Therefore, the SENOMAC Trial will investigate the need of completion ALND in case of limited spread to the sentinel lymph nodes not only in patients undergoing any breast surgery, but also in neoadjuvantly treated patients and patients with larger tumors.
Trial Registration: NCT 02240472 , retrospective registration date September 14, 2015 after trial initiation on January 31, 2015.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446737 | PMC |
http://dx.doi.org/10.1186/s12885-017-3361-y | DOI Listing |
Biomed Phys Eng Express
January 2025
School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.
View Article and Find Full Text PDFJMIR Hum Factors
January 2025
New College of Florida, Sarasota, FL, United States.
Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.
View Article and Find Full Text PDFInt J Radiat Biol
January 2025
Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei City, Taiwan.
Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.
View Article and Find Full Text PDFPLoS One
January 2025
Biology Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia.
This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!