Background: Cardiovascular diseases are the leading cause of death worldwide. A prominent cause of cardiovascular events is atherosclerosis, a chronic inflammation of the arterial wall that leads to the formation of so called atherosclerotic plaques. There is a strong clinical need to develop new, non-invasive vascular imaging techniques in order to identify high-risk plaques, which might escape detection using conventional methods based on the assessment of the luminal narrowing. In this context, molecular imaging strategies based on fluorescent tracers and fluorescence reflectance imaging (FRI) seem well suited to assess molecular and cellular activity. However, such an analysis demands a precise and standardized analysis method, which is orientated on reproducible anatomical landmarks, ensuring to compare equivalent regions across different subjects.
Methods: We propose a novel method, Statistical Permutation-based Artery Mapping (SPAM). Our approach is especially useful for the understanding of complex and heterogeneous regional processes during the course of atherosclerosis. Our method involves three steps, which are (I) standardisation with an additional intensity normalization, (II) permutation testing, and (III) cluster-enhancement. Although permutation testing and cluster enhancement are already well-established in functional magnetic resonance imaging, to the best of our knowledge these strategies have so far not been applied in cardiovascular molecular imaging.
Results: We tested our method using FRI images of murine aortic vessels in order to find recurring patterns in atherosclerotic plaques across multiple subjects. We demonstrate that our pixel-wise and cluster-enhanced testing approach is feasible and useful to analyse tracer distributions in FRI data sets of aortic vessels.
Conclusions: We expect our method to be a useful tool within the field of molecular imaging of atherosclerotic plaques since cluster-enhanced permutation testing is a powerful approach for finding significant differences of tracer distributions in inflamed atherosclerotic vessels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5446712 | PMC |
http://dx.doi.org/10.1186/s12880-017-0207-7 | DOI Listing |
EBioMedicine
December 2024
Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, Paris, France.
Background: Neovascularisation of carotid plaques contributes to their vulnerability. Current imaging methods such as contrast-enhanced ultrasound (CEUS) usually lack the required spatial resolution and quantification capability for precise neovessels identification. We aimed at quantifying plaque vascularisation with ultrasound localization microscopy (ULM) and compared the results to histological analysis.
View Article and Find Full Text PDFJ Cardiovasc Dev Dis
December 2024
Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA.
The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with F-sodium fluoride.
View Article and Find Full Text PDFOpen Med (Wars)
December 2024
Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
Background: Atherosclerosis is a lipid-driven inflammatory disease characterized by plaque formation in major arteries. These plaques contain lipid-rich macrophages that accumulate through monocyte recruitment, local macrophage differentiation, and proliferation.
Objective: We identify the macrophage subsets that are closely related to atherosclerosis and reveal the key pathways in the progression of atherosclerotic disease.
Int Immunopharmacol
December 2024
College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China; State Key Laboratory of New Pharmaceutical Preparations and Excipients, Baoding, China. Electronic address:
Efferocytosis is considered the key to eliminate apoptotic cells (ACs) under physiological and pathological conditions in vivo, mainly through different types of macrophages to achieve this process. Especially, tissue-resident macrophages (TRMs) are very significant for inflammation regression and maintenance of homeostasis in vivo. Abnormal efferocytosis will lead to the accumulation of ACs and the release of a variety of pro-inflammatory factors, which mediates the occurrence of many inflammatory diseases, including atherosclerosis (AS).
View Article and Find Full Text PDFAnal Chem
December 2024
Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China.
To answer the call for effective and timely intervention in cardiovascular diseases (CVDs), the development of fluorescent probes that can precisely identify atherosclerotic plaques, the root cause of various fatal CVDs, is highly desirable but remains a great challenge. Herein, by integrating bis(trifluoromethyl)benzyl and phenothiazine into the coumarin matrix, a robust fluorescent probe, NOR1, has been developed. NOR1 responds sequentially to lipid droplets (LDs) and HClO via fluorescence turn-on and ratiometric readouts, respectively, with a fast response rate (within 70 s for LDs and 80 s for HClO), excellent sensitivity (detection limit: 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!