Chiral recognition of naproxen enantiomers based on fluorescence quenching of bovine serum albumin-stabilized gold nanoclusters.

Spectrochim Acta A Mol Biomol Spectrosc

Professor Massoumi Laboratory, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran. Electronic address:

Published: October 2017

AI Article Synopsis

  • A new, efficient method for distinguishing between S- and R-naproxen enantiomers was developed using gold nanoclusters and bovine serum albumin, showing a stronger fluorescence quenching with S-naproxen.
  • The method demonstrated specific chiral recognition due to the steric effects arising from the interactions between the serum albumin and the naproxen molecules at a pH of 7.0.
  • Linear detection ranges for both enantiomers were established, along with low detection limits, suggesting the method's reliability for analyzing synthetic samples, though preprocessing to remove heavy metals is recommended for biological samples.

Article Abstract

A simple, fast and green method for chiral recognition of S- and R-naproxen has been introduced. The method was based on quenching of the fluorescence intensity of bovine serum albumin-stabilized gold nanoclusters in the presence of naproxen enantiomers. The quenching intensity in the presence of S-naproxen was higher than R-naproxen when phosphate buffer solution at pH7.0 was used. The chiral recognition occurred due to steric effect between bovine serum albumin conformation and naproxen enantiomers. Two linear determination range were established as 7.4×10-9.1×10 and 9.1×10-3.1×10molL for both enantiomers and detection limits of 7.4×10molL and 9.5×10molL were obtained for S- and R-naproxen, respectively. The developed method showed good repeatability and reproducibility for the analysis of a synthetic sample. To make the procedure applicable to biological samples, the removal of heavy metals from the sample is suggested before any analytical attempt.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2017.05.029DOI Listing

Publication Analysis

Top Keywords

chiral recognition
12
naproxen enantiomers
12
bovine serum
12
serum albumin-stabilized
8
albumin-stabilized gold
8
gold nanoclusters
8
recognition naproxen
4
enantiomers
4
enantiomers based
4
based fluorescence
4

Similar Publications

Chiral synthetic hosts for efficient enantioselective molecular recognition. Design principles and synthetic aspects.

Chem Commun (Camb)

January 2025

Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain.

Discrimination of enantiomeric substrate molecules is one of the fundamental properties of biological hosts. Replicating enantioselective molecular recognition with synthetic receptors is a topic of interest with implications in diverse applications such as bioinspired enantioselective catalysis, enantiomer separation, or sensing. In this review, five different systems reported in the literature are discussed, and their performance and versatility are analyzed.

View Article and Find Full Text PDF

The reaction between a chiral carboxylic acid molecule and 1,1'-bis(diphenylphosphino)ferrocenepalladium dichloride in the presence of a mild base generates a chiroptically active metal complex displaying strong circular dichroism (CD) signals in the visible light region, a highly sought-after goal in the optical sensing realm. The molecular recognition process is complete within a few minutes and can be used for fast chiroptical determination of the enantiomeric composition and concentration of carboxylic acid samples. This method is operationally simple and broadly applicable to a large variety of structures including important drugs, natural products, amino acids, and hydroxy acids.

View Article and Find Full Text PDF

A bifunctional coumarin-based CD probe for chiral analysis of amino acids in aqueous solution.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States. Electronic address:

Amino acids play important roles in human pathology and physiology and the qualitative and quantitative determination of chiral amino acids in humans and mammals also has important impacts on the life sciences. Therefore, the introduction of artificial probes to assess the concentrations and enantiomeric compositions [ee = ([D] - [L])/([D] + [L])] of amino acids in aqueous solution is necessary in understanding certain biological processes and diagnosing and treating diseases. Herein, a bifunctional achiral coumarin probe (Br-Coumarin) is reported to determine the absolute configuration, ee value, and concentration of 16 amino acids in THF/HO = 1/4 solution at micromolar concentrations.

View Article and Find Full Text PDF

The mechanism of discriminative aminoacylation by isoleucyl-tRNA synthetase based on wobble nucleotide recognition.

Nat Commun

December 2024

State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.

The faithful charging of amino acids to cognate tRNAs by aminoacyl-tRNA synthetases (AARSs) determines the fidelity of protein translation. Isoleucyl-tRNA synthetase (IleRS) distinguishes tRNA from tRNA solely based on the nucleotide at wobble position (N34), and a single substitution at N34 could exchange the aminoacylation specificity between two tRNAs. Here, we report the structural and biochemical mechanism of N34 recognition-based tRNA discrimination by Saccharomyces cerevisiae IleRS (ScIleRS).

View Article and Find Full Text PDF

Chiral macrocycles have emerged as attractive media for chromatographic enantioseparation due to their excellent host-guest recognition properties. In this study, a new chiral stationary phase (CSP) based on 1,1'-binaphthyl chiral polyimine macrocycle (CPM) was reported. The CPM was synthesized by one-step aldehyde-amine condensation of (S)-2,2'-dihydroxy-[1,1'-binaphthalene]-3,3'-dicarboxaldehyde with 1,2-phenylenediamine and bonded on thiolated silica via the thiol-ene click reaction to afford the CSP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!