Direct observation of atomic migration both on and below surfaces is a long-standing but important challenge in materials science as diffusion is one of the most elementary processes essential to many vital material behaviors. Probing the kinetic pathways, including metastable or even transition states involved down to atomic scale, holds the key to the underlying physical mechanisms. Here, we applied aberration-corrected transmission electron microscopy (TEM) to demonstrate direct atomic-scale imaging and quasi-real-time tracking of diffusion of Mo adatoms and vacancies in monolayer MoS, an important two-dimensional transition metal dichalcogenide (TMD) system. Preferred kinetic pathways and the migration potential-energy landscape are determined experimentally and confirmed theoretically. The resulting three-dimensional knowledge of the atomic configuration evolution reveals the different microscopic mechanisms responsible for the contrasting intrinsic diffusion rates for Mo adatoms and vacancies. The new insight will benefit our understanding of material processes such as phase transformation and heterogeneous catalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.6b05342 | DOI Listing |
PLoS Pathog
January 2025
LPHI, UMR 5294 CNRS/UM-UA15 Inserm, Université de Montpellier, Montpellier, France.
A sustained blood-stage infection of the human malaria parasite P. falciparum relies on the active exit of merozoites from their host erythrocytes. During this process, named egress, the infected red blood cell undergoes sequential morphological events: the rounding-up of the surrounding parasitophorous vacuole, the disruption of the vacuole membrane and finally the rupture of the red blood cell membrane.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China University of Science and Technology, School of Chemistry and Molecular Engineering, Meilong Road 130, 200237, Shanghai, CHINA.
Kinetically controlled self-assembly is garnering increasing interest in the field of supramolecular polymers and materials, yet examples involving dynamic covalent exchange remain relatively unexplored. Here we report an unexpected dynamic covalent polymeric system whose aqueous self-assembly pathway is strongly influenced by the kinetics of evaporation of water. The key design is to integrate dual dynamic covalent bonds-including disulfide bonds and boroxine/borate-into a dynamic equilibrium system of monomers, polymers, and materials.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
The pressure-dependent reactions on the NH potential energy surface (PES) have been investigated using CCSD(T)-F12/aug-cc-pVTZ-F12//B2PLYP-D3/aug-cc-pVTZ. This study expands the NH PES beyond the previous literature by incorporating a newly identified isomer, NHN, along with additional bimolecular reaction channels associated with this isomer, namely NNH + H and HNN(S) + H. Rate coefficients for all relevant pressure-dependent reactions, including well-skipping pathways, are predicted using a combination of transition state theory and master equation simulations.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
The incorporation of a glassy material into a self-assembled nanoparticle (NP) film can produce highly loaded nanocomposites. Reduction of the NP diameter can lead to extreme nanoconfinement of the glass, significantly affecting the thermal and physical properties of the nanocomposite material. Here, we investigate the photostability and photodegradation mechanisms of molecular nanocomposite films (MNCFs) produced from the infiltration of indomethacin (IMC) molecules into self-assembled films of silica NPs (11-100 nm in diameter).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
National Engineering Research Centre for Mg Alloys, Chongqing University, Chongqing 400044, PR China.
Rechargeable Mg batteries are promising candidates for achieving considerable high-energy-density. Enhancing the energy density can be achieved by integrating metallic Mg anodes with conversion-type cathode materials, which are characterized by multi-electron transfer process and elevated specific capacities in contrast to intercalation-type materials. Despite these advantages, the conversion-type cathodes still have some challenges of substantial volume expansion, sluggish diffusion kinetics and intricate mesophase evolution during repeated electrochemical reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!