We present a theoretical approach to investigate the effect of dispersion in dynamical systems commonly described by time-delay models. The introduction of a polarization equation provides a means to introduce dispersion as a distributed delay term. The expansion of this term in power series, as usually performed to study the propagation of waves in spatially extended systems, can lead to the appearance of spurious instabilities. This approach is illustrated using a long cavity laser, where in the normal dispersion regime both the experiment and theory show a stable operation, while a modulation instability, commonly referred as the Benjamin-Feir instability, is observed in the anomalous dispersion regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.193901 | DOI Listing |
Environ Sci Technol
January 2025
Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China.
Membrane distillation (MD) efficiently desalinizes and treats high-salinity water as well as addresses the challenges in handling concentrated brines and wastewater. However, silica scaling impeded the effectiveness of MD for treating hypersaline water and wastewater. Herein, the effects of humic acid (HA) on silica scaling behavior during MD are systematically investigated.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Marine Resources Utilization in South China Sea, School of Marine Science and Engineering, Hainan University, Haikou 570228, China.
In response to the 2023 "Action Plan for Methane Emission Control" in China, which mandates precise methane (CH) emission accounting, we developed a dynamic model to estimate CH emissions from fossil-fuel and food systems in China for the period 1990-2020. We also analyzed their socioeconomic drivers through the Logarithmic Mean Divisia Index (LMDI) model. Our analysis revealed an accelerated emission increase (850.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
IBiTech - BioMMedA Group, Ghent University, Corneel Heymanslaan 10, Entrance 98, 9000 Gent, Belgium.
Molecular oxygen (O) is essential for life, and continuous effort has been made to understand its pathways in cellular respiration with all-atom (AA) molecular dynamics (MD) simulations of, e.g., membrane permeation or binding to proteins.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
Self-diffusion coefficients, *, are routinely estimated from molecular dynamics simulations by fitting a linear model to the observed mean squared displacements (MSDs) of mobile species. MSDs derived from simulations exhibit statistical noise that causes uncertainty in the resulting estimate of *. An optimal scheme for estimating * minimizes this uncertainty, i.
View Article and Find Full Text PDFHeliyon
January 2025
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!