Boson sampling is a problem strongly believed to be intractable for classical computers, but can be naturally solved on a specialized photonic quantum simulator. Here, we implement the first time-bin-encoded boson sampling using a highly indistinguishable (∼94%) single-photon source based on a single quantum-dot-micropillar device. The protocol requires only one single-photon source, two detectors, and a loop-based interferometer for an arbitrary number of photons. The single-photon pulse train is time-bin encoded and deterministically injected into an electrically programmable multimode network. The observed three- and four-photon boson sampling rates are 18.8 and 0.2 Hz, respectively, which are more than 100 times faster than previous experiments based on parametric down-conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.118.190501 | DOI Listing |
J Phys Chem Lett
January 2025
Department of Chemistry and Biochemistry, George Mason University, Fairfax, Virginia 22030, United States.
The simulation of non-Markovian quantum dynamics plays an important role in the understanding of charge and exciton dynamics in the condensed phase environment, yet such a simulation remains computationally expensive on classical computers. In this work, we develop a variational quantum algorithm that is capable of simulating non-Markovian quantum dynamics on quantum computers. The algorithm captures the non-Markovian effect by employing the Ehrenfest trajectories and Monte Carlo sampling of their thermal distribution.
View Article and Find Full Text PDFNat Commun
January 2025
Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185, Roma, Italy.
The implementation of large-scale universal quantum computation represents a challenging and ambitious task on the road to quantum processing of information. In recent years, an intermediate approach has been pursued to demonstrate quantum computational advantage via non-universal computational models. A relevant example for photonic platforms has been provided by the Boson Sampling paradigm and its variants, which are known to be computationally hard while requiring at the same time only the manipulation of the generated photonic resources via linear optics and detection.
View Article and Find Full Text PDFRep Prog Phys
January 2025
European Organization for Nuclear Research, HCP, CH-1211 GENEVE 23, Geneva, 1211 Geneva 23, SWITZERLAND.
A search for light long-lived particles decaying to displaced jets is presented, using a data sample of proton-proton collisions at a center-of-mass energy of 13.6 TeV, corresponding to an integrated luminosity of 34.7 fb$^{-1}$, collected with the CMS detector at the CERN LHC in 2022.
View Article and Find Full Text PDFNat Photonics
October 2024
Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, Varennes, Quebec Canada.
Quantum walks on photonic platforms represent a physics-rich framework for quantum measurements, simulations and universal computing. Dynamic reconfigurability of photonic circuitry is key to controlling the walk and retrieving its full operation potential. Universal quantum processing schemes based on time-bin encoding in gated fibre loops have been proposed but not demonstrated yet, mainly due to gate inefficiencies.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Physics, University of Arizona, Tucson, AZ 85721, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!