Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota.

Wiley Interdiscip Rev Nanomed Nanobiotechnol

School of Biochemistry, University of Bristol, Bristol, UK.

Published: January 2018

Ingestion of engineered nanomaterials is inevitable due to their addition to food and prevalence in food packaging and domestic products such as toothpaste and sun cream. In the absence of robust dosimetry and particokinetic data, it is currently challenging to accurately assess the potential toxicity of food-borne nanomaterials. Herein, we review current understanding of gastrointestinal uptake mechanisms, consider some data on the potential for toxicity of the most commonly encountered classes of food-borne nanomaterials (including TiO , SiO ZnO, and Ag nanoparticles), and discuss the potential impact of the luminal environment on nanoparticle properties and toxicity. Much of our current understanding of gastrointestinal nanotoxicology is derived from increasingly sophisticated epithelial models that augment in vivo studies. In addition to considering the direct effects of food-borne nanomaterials on gastrointestinal tissues, including the potential role of chronic nanoparticle exposure in development of inflammatory diseases, we also discuss the potential for food-borne nanomaterials to disturb the normal balance of microbiota within the gastrointestinal tract. The latter possibility warrants close attention given the increasing awareness of the critical role of microbiota in human health and the known impact of some food-borne nanomaterials on bacterial viability. WIREs Nanomed Nanobiotechnol 2018, 10:e1481. doi: 10.1002/wnan.1481 This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5810149PMC
http://dx.doi.org/10.1002/wnan.1481DOI Listing

Publication Analysis

Top Keywords

food-borne nanomaterials
24
effects food-borne
8
nanomaterials
8
nanomaterials gastrointestinal
8
gastrointestinal tissues
8
potential toxicity
8
current understanding
8
understanding gastrointestinal
8
discuss potential
8
gastrointestinal
5

Similar Publications

A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.

View Article and Find Full Text PDF

Food safety is of great concern, and food-borne bacterial infections and diseases are a major crisis for health. Therefore, it is necessary to develop rapid detection techniques for the prevention and recognition of food safety hazards caused by food-borne pathogens. In recent years, the fluorescence assay has become a widely utilized detection method due to its good signal amplification effect, high detection sensitivity, high stability, and short detection time.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent research has focused on using nanoparticles (NPs), especially those created through "green" methods involving natural organisms and plant extracts, to develop new antimicrobial agents against Listeria.
  • * This review summarizes findings on various antimicrobial NPs and their applications in biopolymer films for food packaging, emphasizing their potential to combat L. monocytogenes and addressing safety issues.
View Article and Find Full Text PDF

Bacterial infection is one of the major concerns of the growing society, and over the years, different permutations and combinations of various drugs and adjuvants have been attempted, which led to considerable improvements in the efficacy of the antibacterial drugs. In this regard, macrocyclic receptors such as cyclodextrin, cucurbiturils, calixarene, etc., have played a major role by modulating the drug properties that supplement the antibacterial efficacy.

View Article and Find Full Text PDF

Fabricating metal oxide nanoparticles has garnered much attention lately because creating safe chemicals, sustainable materials, economic processes, and renewable resources is becoming increasingly important. This research shows how TiO nanoparticles (NPs) could be generated in an ecologically responsible way using waste coconut husk with the help of tender coconut. This extract functions as both a reducing agent and a sealing agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!