Inflammation is a crucial component in the pathogenesis of many vascular diseases, such as atherosclerosis and diabetes. Inflammasomes are intracellular signalling complexes whose activation promotes inflammation. Nucleotide-binding domain and Leucine-rich repeat Receptor containing a Pyrin domain 3 (NLRP3) is a pattern recognition receptor (PRR) forming the best-known inflammasome. Disturbances in NLRP3 have been associated with multiple diseases. The purpose of this study was to explore the lysosomal destabilization-related NLRP3 inflammasome signaling pathway in human endothelial cells. In order to prime and activate NLRP3, human umbilical vein cells (HUVECs) were exposed to TNF-α and the lysosomal destructive agent Leusine-Leusine-O-Methylesther (Leu-Leu-OMe), respectively. A caspase-1 inhibitor was used to block caspase-1's enzymatic function and an interleukin 1 receptor antagonist (IL-1RA) to prevent any possible secondary effects of IL-1β. Leu-Leu-OMe increased the expression of NLRP3, IL-1β, and IL-18 in HUVECs. Exposure to Leu-Leu-OMe significantly promoted the production of IL-6 and IL-8 in primed HUVECs; this effect was prevented by the pre-treatment of cells with an IL-1RA. Our results suggest that lysosomal destabilization activates the NLRP3 inflammasome pathway that promotes the production of IL-6 and IL-8 in an autocrine manner in HUVEC cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5559399 | PMC |
http://dx.doi.org/10.1007/s12079-017-0396-4 | DOI Listing |
Nutrients
December 2024
Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy.
Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
Fatty liver hemorrhagic syndrome (FLHS) in laying hens is a nutritional and metabolic disease involving liver enlargement, hepatic steatosis, and hepatic hemorrhage as the primary symptoms. The syndrome is prone to occur during the peak laying period of laying hens, which has resulted in significant economic losses in the laying hen breeding industry; however, the specific pathogenesis of FLHS remains unclear. Our group and previous studies have shown that bile acid levels are significantly decreased during the development of fatty liver and that targeted activation of bile acid-related signaling pathways is beneficial for preventing and treating fatty liver.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.
Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China.
Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear.
View Article and Find Full Text PDFPhytother Res
January 2025
Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India.
Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!