Raman amplification arising from the excitation of a density echelon in plasma could lead to amplifiers that significantly exceed current power limits of conventional laser media. Here we show that 1-100 J pump pulses can amplify picojoule seed pulses to nearly joule level. The extremely high gain also leads to significant amplification of backscattered radiation from "noise", arising from stochastic plasma fluctuations that competes with externally injected seed pulses, which are amplified to similar levels at the highest pump energies. The pump energy is scattered into the seed at an oblique angle with 14 J sr, and net gains of more than eight orders of magnitude. The maximum gain coefficient, of 180 cm, exceeds high-power solid-state amplifying media by orders of magnitude. The observation of a minimum of 640 J sr directly backscattered from noise, corresponding to ≈10% of the pump energy in the observation solid angle, implies potential overall efficiencies greater than 10%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445100PMC
http://dx.doi.org/10.1038/s41598-017-01783-4DOI Listing

Publication Analysis

Top Keywords

raman amplification
8
seed pulses
8
pump energy
8
orders magnitude
8
ultra-high gain
4
gain efficient
4
efficient amplifier
4
amplifier based
4
based raman
4
amplification plasma
4

Similar Publications

Surface-enhanced Raman scattering (SERS) represents a compelling detection methodology centered on the electromagnetic fields, commonly termed "hot spots", generated around noble nanoparticles. Nonetheless, the efficacy of electromagnetic field (EMF) amplification is constrained when utilizing individual nanoparticles. There has been a notable lack of experimental and theoretically simulated studies regarding the increase of the electromagnetic field when gold nanorods with different aspect ratios undergo self-assembly in either perpendicular or parallel orientations to substrates.

View Article and Find Full Text PDF

Trace detection of S. aureus cells in food samples via RCA-assisted SERS signal amplification with core-shell nanoprobe.

Talanta

December 2024

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, PR China. Electronic address:

Staphylococcus aureus (S. aureus) has been identified as a indicator of food contamination. In this study, a sensitive and accurate biosensor strategy for S.

View Article and Find Full Text PDF

Advances in Functional Nucleic Acid SERS Sensing Strategies.

ACS Sens

January 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.

Functional nucleic acids constitute a distinct category of nucleic acids that diverge from conventional nucleic acid amplification methodologies. They are capable of forming intricate hybrid structures through Hoogsteen and reverse Hoogsteen hydrogen bonding interactions between double-stranded and single-stranded DNA, thereby broadening the spectrum of DNA interactions. In recent years, functional DNA/RNA-based surface-enhanced Raman spectroscopy (SERS) has emerged as a potent platform capable of ultrasensitive and multiplexed detection of a variety of analytes of interest.

View Article and Find Full Text PDF

Nanogap-Assisted SERS/PCR Biosensor Coupled Machine Learning for the Direct Sensing of in Food.

J Agric Food Chem

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.

() is the primary risk factor in food safety. Herein, a nanogap-assisted surface-enhanced Raman scattering/polymerase chain reaction (SERS/PCR) biosensor coupled with a machine-learning tool was developed for the direct and specific sensing of S. aureus in milk.

View Article and Find Full Text PDF

A novel dual-mode detection method for microRNA-21 was developed. Photoluminescent (PL) and multiphonon resonant Raman scattering (MRRS) techniques were combined by using ZnTe nanoparticles as signal probes for reliable detection. The catalytic hairpin assembly (CHA) strategy was integrated with superparamagnetic FeO nanoparticle clusters (NCs) to enhance sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!