A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated quality control of forced oscillation measurements: respiratory artifact detection with advanced feature extraction. | LitMetric

The forced oscillation technique (FOT) can provide unique and clinically relevant lung function information with little cooperation with subjects. However, FOT has higher variability than spirometry, possibly because strategies for quality control and reducing artifacts in FOT measurements have yet to be standardized or validated. Many quality control procedures rely on either simple statistical filters or subjective evaluation by a human operator. In this study, we propose an automated artifact removal approach based on the resistance against flow profile, applied to complete breaths. We report results obtained from data recorded from children and adults, with and without asthma. Our proposed method has 76% agreement with a human operator for the adult data set and 79% for the pediatric data set. Furthermore, we assessed the variability of respiratory resistance measured by FOT using within-session variation (wCV) and between-session variation (bCV). In the asthmatic adults test data set, our method was again similar to that of the manual operator for wCV (6.5 vs. 6.9%) and significantly improved bCV (8.2 vs. 8.9%). Our combined automated breath removal approach based on advanced feature extraction offers better or equivalent quality control of FOT measurements compared with an expert operator and computationally more intensive methods in terms of accuracy and reducing intrasubject variability. The forced oscillation technique (FOT) is gaining wider acceptance for clinical testing; however, strategies for quality control are still highly variable and require a high level of subjectivity. We propose an automated, complete breath approach for removal of respiratory artifacts from FOT measurements, using feature extraction and an interquartile range filter. Our approach offers better or equivalent performance compared with an expert operator, in terms of accuracy and reducing intrasubject variability.

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00726.2016DOI Listing

Publication Analysis

Top Keywords

quality control
20
forced oscillation
12
feature extraction
12
fot measurements
12
data set
12
advanced feature
8
oscillation technique
8
technique fot
8
strategies quality
8
artifacts fot
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!