A transfer RNA gene rearrangement in the lepidopteran mitochondrial genome.

Biochem Biophys Res Commun

Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering, Yancheng Teachers University, Yancheng 224007, Jiangsu Province, PR China.

Published: July 2017

Gene arrangements in the mitochondrial genomes (mitogenomes) of insects are conserved across the major lineages, but can be rearranged within derived groups and may provide valuable phylogenetic characters. In this study, we sequenced the entire mitogenome of Parasa consocia, a moth of the family Limacodidae (Lepidoptera: Zygaenoidea). Compared with other lepidopterans and ancestral insects, the P. consocia mitogenome features a transfer RNA gene arrangement novel among lepidopterans between the ND3 and ND5 genes: RANSEF (the underline signifies an inverted gene), which differs from the ARNSEF arrangement of ancestral insects. This rearrangement can be explained by the tandem duplication-random loss model. We inferred a phylogenetic hypothesis for the lepidopteran superfamily based on mitochondrial amino-acid sequences using the Bayesian-inference and maximum-likelihood methods. Our results showed that P. consocia belongs to the Zygaenoidea superfamily and supported the following phylogenetic relationship: Yponomeutoidea + (Tortricoidea + Zygaenoidea + (Papilionoidea + (Pyraloidea + (Noctuoidea + (Geometroidea + Bombycoidea)))))). Comparative analyses indicated that mitogenomes are a useful phylogenetic tool at the subfamily level within the order Lepidoptera. Our findings also suggest that mitogenomes are likely to represent a valuable tool for systematics in other groups of lepidopterans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2017.05.115DOI Listing

Publication Analysis

Top Keywords

transfer rna
8
rna gene
8
ancestral insects
8
gene
4
gene rearrangement
4
rearrangement lepidopteran
4
lepidopteran mitochondrial
4
mitochondrial genome
4
genome gene
4
gene arrangements
4

Similar Publications

Transcription coactivator YAP1 promotes CCND1/CDK6 expression, stimulating cell proliferation in cloned cattle placentas.

Zool Res

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.

Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.

View Article and Find Full Text PDF

Human RNA ligase 1 (Rlig1) catalyzes the ligation of 5'-phosphate to 3'-hydroxyl ends a conserved three-step mechanism. Rlig1-deficient HEK293 cells exhibit reduced cell viability and RNA integrity under oxidative stress, suggesting Rlig1's role in RNA repair maintenance. Reactive oxygen species (ROS) are linked to various diseases, including neurodegenerative disorders and cancer, where RNA damage has significant effects.

View Article and Find Full Text PDF

(Omphalotaceae, Agaricales), A New Species from Danang, Vietnam.

Mycobiology

December 2024

Faculty of Chemical Technology and Environment, University of Technology and Education, The University of Danang, Danang, Vietnam.

During the collection of macrofungi resources in Son Tra Nature Reserve, Danang, Vietnam, two fungal specimens of the genus , designated as M34295 and M3457, living on dead still-attached branches of L. at an elevation around 360 m above the sea level were recorded. The morphological characteristics of the specimens shared some common characteristics with spp.

View Article and Find Full Text PDF

Chromosome-level genome assembly of tetraploid Chinese cherry (Prunus pseudocerasus).

Sci Data

January 2025

Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.

Chinese cherry belongs to the family Rosaceae, genus Prunus, and has high nutritional and economic value. 'Duiying' is a Chinese cherry variety local to Beijing, and has better performance than sweet cherry in terms of disease resistance. However, disease resistance resources of 'Duiying' have not been fully exploited partially due to the lack of a high-quality genome.

View Article and Find Full Text PDF

Automated Laser-Assisted Single-Cell Sorting for Cell Functional and RNA Sequencing.

ACS Sens

January 2025

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P. R. China.

Accurate and efficient sorting of single target cells is crucial for downstream single-cell analysis, such as RNA sequencing, to uncover cellular heterogeneity and functional characteristics. However, conventional single-cell sorting techniques, such as manual micromanipulation or fluorescence-activated cell sorting, do not match current demands and are limited by low throughput, low sorting efficiency and precision, or limited cell viability. Here, we report an automated, highly efficient single-cell sorter, integrating laser-induced forward transfer (LIFT) with a high-throughput picoliter micropore array.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!