A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polyphenols protect mitochondrial membrane against permeabilization induced by HEWL oligomers: Possible mechanism of action. | LitMetric

Increasing body of evidence suggests that polyphenols frequently interacting with amyloid aggregates and/or interfering with aggregate species to bind biomembranes may serve as a therapeutic approach for the treatment of amyloid-related diseases. Hence, in the present study, the possible effects of three naturally occurring polyphenols including Curcumin, Quercetin, and Resveratrol on mitochondrial membrane permeabilization induced by Hen Egg White Lysozyme (HEWL) oligomers were investigated. Our results indicated that pre-incubation of mitochondrial homogenate with polyphenols considerably inhibit membrane permeabilization in a concentration dependent manner. In parallel, HEWL oligomers, which were co-incubated with the polyphenols, showed less effectiveness on membrane permeabilization, suggesting that toxicity of oligomers was hindered. Using a range of techniques including fluorescence quenching, Nile red binding assay, zeta potential and size measurements, CD (far- and near-UV) spectroscopy, and molecular docking, we found that the polyphenols, structure-dependently, interact with and induce conformational changes in HEWL oligomers, thereby inhibit their toxicity. We proposed a mechanism by which selected polyphenols induce their protective effects through binding to mitochondria and interfering with HEWL oligomer-membrane interactions and/or by direct interaction with HEWL oligomers, induction of conformational changes, and generating far less toxic species. However, additional studies are needed to elucidate the detailed mechanisms involved.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2017.05.130DOI Listing

Publication Analysis

Top Keywords

hewl oligomers
20
membrane permeabilization
16
mitochondrial membrane
8
permeabilization induced
8
conformational changes
8
polyphenols
7
hewl
6
oligomers
6
polyphenols protect
4
protect mitochondrial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!