A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anticystogenic activity of a small molecule PAK4 inhibitor may be a novel treatment for autosomal dominant polycystic kidney disease. | LitMetric

Anticystogenic activity of a small molecule PAK4 inhibitor may be a novel treatment for autosomal dominant polycystic kidney disease.

Kidney Int

Division of Nephrology, Department of Internal Medicine, University of California, Davis, California, USA; Cancer Center, University of California, Davis, California, USA; Medical Service, VA Northern California Health Care System, Mather, California, USA. Electronic address:

Published: October 2017

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common hereditary renal disease with no currently available targeted therapies. Based on the established connection between β-catenin signaling and renal ciliopathies, and on data from our and other laboratories showing striking similarities of this disease and cancer, we evaluated the use of an orally bioavailable small molecule, KPT-9274 (a dual inhibitor of the protein kinase PAK4 and nicotinamide phosphoribosyl transferase), for treatment of ADPKD. Treatment of PKD-derived cells with this compound not only reduces PAK4 steady-state protein levels and regulates β-catenin signaling, but also inhibits nicotinamide phosphoribosyl transferase, the rate-limiting enzyme in a key NAD salvage pathway. KPT-9274 can attenuate cellular proliferation and induce apoptosis associated with a decrease in active (phosphorylated) PAK4 and β-catenin in several Pkd1-null murine cell lines, with a less pronounced effect on the corresponding phenotypically normal cells. Additionally, KPT-9274 shows inhibition of cystogenesis in an ex vivo model of cyclic AMP-induced cystogenesis as well as in the early stage Pkd1:Pkhd1-Cre mouse model, the latter showing confirmation of specific anti-proliferative, apoptotic, and on-target effects. NAD biosynthetic attenuation by KPT-9274, while critical for highly proliferative cancer cells, does not appear to be important in the slower growing cystic epithelial cells during cystogenesis. KPT-9274 was not toxic in our ADPKD animal model or in other cancer models. Thus, this small molecule inhibitor could be evaluated in a clinical trial as a viable therapy of ADPKD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610616PMC
http://dx.doi.org/10.1016/j.kint.2017.03.031DOI Listing

Publication Analysis

Top Keywords

small molecule
12
autosomal dominant
8
dominant polycystic
8
polycystic kidney
8
kidney disease
8
β-catenin signaling
8
nicotinamide phosphoribosyl
8
phosphoribosyl transferase
8
kpt-9274
5
anticystogenic activity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!