Background: Cancer stem cells (CSCs) are a subset of cells within the bulk of a tumor that have the ability to self-renew and differentiate, and are thus associated with cancer invasion, metastasis, and recurrence. Phenethyl isothiocyanate (PEITC) is a natural compound found in cruciferous vegetables such as broccoli and is used as a cancer chemopreventive agent; however, its effects on CSCs are little known.
Purpose: To evaluate the effect of PEITC on CSCs in this study by examining CSC properties.
Methods: NCCIT human embryonic carcinoma cells were treated with PEITC, and the expression of pluripotency factors Oct4, Sox-2, and Nanog were evaluated by luciferase assay and western blot. Effect of PEITC on self-renewal capacity and clonogenicity were assessed with the sphere formation, soft agar assay, and clonogenic assay in an epithelial cell adhesion molecule (EpCAM)-expressing CSC model derived from HCT116 colon cancer cells using a cell sorting system. The effect of PEITC was also investigated in a mouse xenograft model obtained by injecting nude mice with EpCAM-expressing cells.
Results: We found that PEITC treatment suppressed expression of the all three pluripotency factors in the NCCIT cells, in which pluripotency factors are highly expressed. Moreover, PEITC suppressed the self-renewal capacity and clonogenicity in the EpCAM-expressing CSC model. EpCAM was used as a specific CSC marker in this study. Importantly, PEITC markedly suppressed both tumor growth and expression of three pluripotency factors in a mouse xenograft model.
Conclusion: These results demonstrate that PEITC might be able to slow down or prevent cancer recurrence by suppressing CSC stemness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2017.01.015 | DOI Listing |
Microsc Microanal
January 2025
Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3.
View Article and Find Full Text PDFTissue Eng Regen Med
January 2025
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, Fujian, China.
Background: The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
Methods: We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
Biotechnol Bioeng
January 2025
Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
Human pluripotent stem cells (hPSCs) can be differentiated in vitro to an increasing number of mature cell types, presenting significant promise for addressing a wide range of diseases and studying human development. One approach to further enhance stem cell differentiation methods would be to coordinate multiple inducible gene or protein switches to operate simultaneously within the same cell, with minimal cross-interference, to precisely regulate a network of lineage-specifying transcription factors (TFs) to guide cell fate decisions. Therefore, in this study, we designed and tested various mammalian gene and protein switches responsive to clinically safe small-molecule inhibitors of viral proteases.
View Article and Find Full Text PDFAnim Genet
February 2025
Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative Medicine, The Royal Veterinary College, Hatfield, Herts, UK.
Bone fractures are a significant problem in Thoroughbred racehorses. The risk of fracture is influenced by both genetic and environmental factors. To determine the biological processes that are affected in genetically susceptible horses, we utilised polygenic risk scoring to establish induced pluripotent stem cells (iPSCs) from horses at high and low genetic risk.
View Article and Find Full Text PDFOsteochondral defects (OCD) pose a significant clinical challenge due to the limited self-repair capacity of cartilage, leading to pain, joint dysfunction, and progression to osteoarthritis. Cellular implantations of adult mesenchymal stem cells (MSCs) enhanced with treatment of factors, such as small molecule Kartogenin (KGN) to promote chondrogenic differentiation, are promising but these cells often encounter hypertrophy during differentiation, compromising long-term stability. Induced pluripotent stem cell-derived MSCs (iMSCs) offer greater proliferative and differentiation capacity than MSCs and may provide a superior source of cells for cartilage repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!