Background: Malignant pleural mesothelioma is an aggressive cancer, characterized by rapid progression and high mortality. Persistence of tumor-initiating cells (TICs, or cancer stem cells) after cytotoxic drug treatment is responsible for tumor relapse, and represents one of the main reasons for the poor prognosis of mesothelioma. In fact, identification of the molecules affecting TIC viability is still a significant challenge.

Methods: TIC-enriched cultures were obtained from 10 human malignant pleural mesotheliomas and cultured in vitro. Three fully characterized tumorigenic cultures, named MM1, MM3, and MM4, were selected and used to assess antiproliferative effects of the multi-kinase inhibitor sorafenib. Cell viability was investigated by MTT assay, and cell cycle analysis as well as induction of apoptosis were determined by flow cytometry. Western blotting was performed to reveal the modulation of protein expression and the phosphorylation status of pathways associated with sorafenib treatment.

Results: We analyzed the molecular mechanisms of the antiproliferative effects of sorafenib in mesothelioma TIC cultures. Sorafenib inhibited cell cycle progression in all cultures, but only in MM3 and MM4 cells was this effect associated with Mcl-1-dependent apoptosis. To investigate the mechanisms of sorafenib-mediated antiproliferative activity, TICs were treated with epidermal growth factor (EGF) or basic fibroblast growth factor (bFGF) causing, in MM3 and MM4 cells, MEK, ERK1/2, Akt, and STAT3 phosphorylation. These effects were abolished by sorafenib only in bFGF-treated cells, while a modest inhibition occurred after EGF stimulation, suggesting that sorafenib effects are mainly due to FGF receptor (FGFR) inhibition. Indeed, FGFR1 phosphorylation was inhibited by sorafenib. Moreover, in MM1 cells, which release high levels of bFGF and showed autocrine activation of FGFR1 and constitutive phosphorylation/activation of MEK-ERK1/2, sorafenib induced a more effective antiproliferative response, confirming that the main target of the drug is the inhibition of FGFR1 activity.

Conclusions: These results suggest that, in malignant pleural mesothelioma TICs, bFGF signaling is the main target of the antiproliferative response of sorafenib, acting directly on the FGFR1 activation. Patients with constitutive FGFR1 activation via an autocrine loop may be more sensitive to sorafenib treatment and the analysis of this possibility warrants further clinical investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445511PMC
http://dx.doi.org/10.1186/s13287-017-0573-7DOI Listing

Publication Analysis

Top Keywords

malignant pleural
16
antiproliferative effects
12
pleural mesothelioma
12
mm3 mm4
12
sorafenib
11
fgf receptor
8
human malignant
8
tumor-initiating cells
8
cell cycle
8
mm4 cells
8

Similar Publications

Introduction: WT1 often presents on the surface of diffuse pleural mesotheliomas (DPMs) and is an ideal therapeutic target. Galinpepimut-S (GPS), a tetravalent, non-human leukocyte antigen-restricted, heteroclitic WT1-specific peptide vaccine was safe and effective in early phase clinical trials and upregulates T-cell suppressive programmed death-ligand 1 in the tumor microenvironment of other malignancies. A randomized phase 2 study of adjuvant GPS in patients with DPM trended toward improved median overall survival.

View Article and Find Full Text PDF

Enhanced detection of actionable mutations in NSCLC through pleural effusion cell-free DNA sequencing: A prospective study.

Eur J Cancer

January 2025

Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Zhongzheng Dist., Taipei City 100, Taiwan. Electronic address:

Background: Inadequate tumour samples often hinder molecular testing in non-small cell lung cancer (NSCLC). Plasma-based cell-free DNA (cfDNA) sequencing has shown promise in bypassing these tissue limitations. Nevertheless, pleural effusion (PE) samples may offer a richer cfDNA source for mutation detection in patients with malignant PE.

View Article and Find Full Text PDF

Engineered Cellular Therapies for the Treatment of Thoracic Cancers.

Cancers (Basel)

December 2024

Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA.

Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses.

View Article and Find Full Text PDF

Thoracic point-of-care ultrasound (T-POCUS) has grown in popularity and usage in small animal emergencies and critical care settings due to its non-invasive nature, mobility, and ability to acquire images in real time. This review summarizes current understanding about T-POCUS in dogs and cats with respiratory illnesses, including normal thoracic ultrasonography appearance and numerous pathological situations. The basics of T-POCUS are covered, including equipment, scanning procedures, and picture settings.

View Article and Find Full Text PDF

Background: It remains uncertain whether the utilization of methylprednisolone during surgery effectively mitigates the occurrence of adverse outcomes. To examine the association between perioperative methylprednisolone administration and postoperative pleural effusion and pneumonia in older patients with non-small cell lung cancer.

Methods: A retrospective cohort study included non-small cell lung cancer patients aged 65 years or older undergoing thoracic surgery between January 2012 and December 2019 in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!