Background: Epidemiological studies have linked exposures to ambient fine particulate matter (PM) and traffic with autonomic nervous system imbalance (ANS) and cardiac pathophysiology, especially in individuals with preexisting disease. It is unclear whether metabolic syndrome (MetS) increases susceptibility to the effects of PM. We hypothesized that exposure to traffic-derived primary and secondary organic aerosols (P + SOA) at ambient levels would cause autonomic and cardiovascular dysfunction in rats exhibiting features of MetS. Male Sprague Dawley (SD) rats were fed a high-fructose diet (HFrD) to induce MetS, and exposed to P + SOA (20.4 ± 0.9 μg/m) for 12 days with time-matched comparison to filtered-air (FA) exposed MetS rats; normal diet (ND) SD rats were separately exposed to FA or P + SOA (56.3 ± 1.2 μg/m).
Results: In MetS rats, P + SOA exposure decreased HRV, QTc, PR, and expiratory time overall (mean effect across the entirety of exposure), increased breathing rate overall, decreased baroreflex sensitivity (BRS) on three exposure days, and increased spontaneous atrioventricular (AV) block Mobitz Type II arrhythmia on exposure day 4 relative to FA-exposed animals receiving the same diet. Among ND rats, P + SOA decreased HRV only on day 1 and did not significantly alter BRS despite overall hypertensive responses relative to FA. Correlations between HRV, ECG, BRS, and breathing parameters suggested a role for autonomic imbalance in the pathophysiologic effects of P + SOA among MetS rats. Autonomic cardiovascular responses to P + SOA at ambient PM levels were pronounced among MetS rats and indicated blunted vagal influence over cardiovascular physiology.
Conclusions: Results support epidemiologic findings that MetS increases susceptibility to the adverse cardiac effects of ambient-level PM, potentially through ANS imbalance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445437 | PMC |
http://dx.doi.org/10.1186/s12989-017-0196-2 | DOI Listing |
BMC Complement Med Ther
January 2025
Department of Cardiovascular Medicine, First Hospital of Northwest University, Xi'an, 710043, China.
Background: Reduced cardiac autophagy, inflammation, and apoptosis contribute to cardiovascular complications caused by metabolic syndrome (MetS). It is documented that the nuclear receptor 4A2 (NR4A2) could modulate autophagy and apoptosis in cardiac complications. The aim of this investigation was to assess the therapeutic potential of luteolin, with documented beneficial properties, against MetS-associated cardiac injury.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt.
Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.
View Article and Find Full Text PDFMetabolic syndrome (MetS) is associated with osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) and accumulation of arterial calcifications (ACs). Metformin (MET) inhibits this transdifferentiation in vitro. Here, we evaluate the in vivo efficacy of oral MET to reduce AC in a model of MetS.
View Article and Find Full Text PDFJ Exp Pharmacol
December 2024
Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia.
Purpose: Endoplasmic reticulum (ER) stress has a prominent role in the pathogenesis of high-fat diet-induced non-alcohol related fatty liver disease (NAFLD). The aim of this study is to investigate the effects of 6-G on the reduction of ER stress-induced NAFLD in metabolic syndrome (MetS) rats.
Methods: Twenty-five male Sprague-Dawley rats were fed with a high-fat high-fructose (HFHF) diet for 16 weeks.
Mol Cell Biochem
December 2024
Department of Biophysics, Panjab University, Chandigarh, 160014, India.
Metabolic syndrome (MetS) is driven by a complex interplay of genetic, lifestyle, and dietary factors, leading to weight gain, insulin resistance, dyslipidemia, and chronic inflammation. Gut microbiota dysbiosis has been recently recognized as a key contributor to MetS, leading to advancements in gut microbiome-based interventions to improve health outcomes. Considering the unique challenges associated with the use of pre/probiotics, short-chain fatty acids (SCFA), also known as postbiotics, have emerged as promising therapeutic agents due to their role in modulating host metabolism and physiology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!