Purpose: Thermal ablation is an energy-based ablation technique widely used during minimally invasive cancer treatment. Simulations are used to predict the dead tissue post therapy. However, one difficulty with the simulations is accurately predicting the ablation zone in post-procedural images due to the contraction of tissue as a result of exposure to elevated temperatures.
Materials And Methods: A mathematical model of the thermoelastic deformation for an elastic isotropic material was coupled with a three state thermal denaturation model to determine the contraction of tissue during thermal ablation. A finite difference method was considered to quantify the tissue contraction for a typical temperature distribution during thermal ablation.
Results: The simulations show that tissue displacement during thermal ablation was not bound to the tissue heated regions only. Both tissue expansion and contraction were observed at the different stages of the heating process. Tissue contraction of up to 42% was obtained with an applicator temperature of 90 °C. A recovery of around 2% was observed with heating removed as a result of unfolded state proteins returning back to its native state. Poisson's ratio and the applicator temperature have both been shown to affect the tissue displacement significantly. The maximum tissue contraction was found to increase with both increasing Poisson's ratio and temperature.
Conclusions: The model presented here will allow predictions of thermal ablation to be corrected for tissue contraction, which is an important effect, during comparison with post-procedural images, thus improving the accuracy of mathematical simulations for treatment planning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/02656736.2017.1335441 | DOI Listing |
Exp Brain Res
January 2025
School of Rehabilitation Sciences, Université Laval, Quebec, Canada.
Navigating public environments requires adjustments to one's walking patterns to avoid stationary and moving obstacles. It is known that physical inactivity induces alterations in motor capacities, but the impact of inactivity on anticipatory locomotor adjustments (ALA) has not been studied. The purpose of the present exploratory study was to compare ALAs and related muscle co-contraction during a pedestrian circumvention task between active (AA) and inactive young adults (IA).
View Article and Find Full Text PDFJ Mol Evol
January 2025
Faculty of Biology, Institute of Evolutionary Biology, University of Warsaw, Ul. Żwirki I Wigury 101, 02-089, Warsaw, Poland.
Expansion and losses of gene families are important drivers of molecular evolution. A recent survey of Fox genes in flatworms revealed that this superfamily of multifunctional transcription factors, present in all animals, underwent extensive losses and expansions during platyhelminth evolution. In this paper, I analyzed Fox gene complement in four additional species of platyhelminths, that represent early-branching lineages in the flatworm phylogeny: catenulids (Stenostomum brevipharyngium and Stenostomum leucops) and macrostomorphs (Macrostomum hystrix and Macrostomum cliftonense).
View Article and Find Full Text PDFToxicol Pathol
January 2025
Charles River Laboratories, Edinburgh, UK.
Thyroid tissue is sensitive to the effects of endocrine disrupting substances, and this represents a significant health concern. Histopathological analysis of tissue sections of the rat thyroid gland remains the gold standard for the evaluation for agrochemical effects on the thyroid. However, there is a high degree of variability in the appearance of the rat thyroid gland, and toxicologic pathologists often struggle to decide on and consistently apply a threshold for recording low-grade thyroid follicular hypertrophy.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Biocatalysis and Enzyme Engineering, Stem Cells and Tissue Engineering Manufacture Center, School of Life Science, Hubei University, Wuhan, Hubei, 430062, China.
Recent advances in drug design and compound synthesis have highlighted the increasing need for effective methods of toxicity evaluation. A specialized force sensor, known as the light wavelength-encoded "Chinese guzheng" is developed. This innovative sensor is equipped with optical fiber strings and utilizes a wavelength-encoded fiber Bragg grating (FBG) that is chemically etched to reduce its diameter.
View Article and Find Full Text PDFCell Tissue Bank
January 2025
Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka, 1349, Bangladesh.
In the quest for an ideal wound healing material, human amniotic membrane (AM), tilapia skin collagen (TSC), and Centella asiatica (CA) have been studied separately for their healing potential. In this study, we formulated AM, TSC, and CA gel and studied their competency and wound healing efficacy in vivo. Gel was formulated using AM, TSC, CA, Carbopol 934, acrylic acid, glycerine, and triethanolamine and physicochemical properties e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!