LoRa Scalability: A Simulation Model Based on Interference Measurements.

Sensors (Basel)

Department of Information Technology, Ghent University-imec, IDLab, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium.

Published: May 2017

LoRa is a long-range, low power, low bit rate and single-hop wireless communication technology. It is intended to be used in Internet of Things (IoT) applications involving battery-powered devices with low throughput requirements. A LoRaWAN network consists of multiple end nodes that communicate with one or more gateways. These gateways act like a transparent bridge towards a common network server. The amount of end devices and their throughput requirements will have an impact on the performance of the LoRaWAN network. This study investigates the scalability in terms of the number of end devices per gateway of single-gateway LoRaWAN deployments. First, we determine the intra-technology interference behavior with two physical end nodes, by checking the impact of an interfering node on a transmitting node. Measurements show that even under concurrent transmission, one of the packets can be received under certain conditions. Based on these measurements, we create a simulation model for assessing the scalability of a single gateway LoRaWAN network. We show that when the number of nodes increases up to 1000 per gateway, the losses will be up to 32%. In such a case, pure Aloha will have around 90% losses. However, when the duty cycle of the application layer becomes lower than the allowed radio duty cycle of 1%, losses will be even lower. We also show network scalability simulation results for some IoT use cases based on real data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490692PMC
http://dx.doi.org/10.3390/s17061193DOI Listing

Publication Analysis

Top Keywords

lorawan network
12
scalability simulation
8
simulation model
8
throughput requirements
8
losses will
8
duty cycle
8
network
5
lora scalability
4
model based
4
based interference
4

Similar Publications

Tracking Boats on Amazon Rivers-A Case Study with the LoRa/LoRaWAN.

Sensors (Basel)

January 2025

Electronic and Information Technology Research and Development Center (CETELI), Federal University of Amazonas, Manaus 69067-005, AM, Brazil.

The Amazon region has the largest hydrographic basin in the world. The rivers act as roads, and boats serve as vehicles for transporting passengers and cargo to large urban centers, municipalities, riverside communities, villages, and settlements. The Amazon River transportation system faces critical gaps due to the lack of land infrastructure in certain areas, which makes rivers essential for commerce and access to isolated communities.

View Article and Find Full Text PDF

The paper presents a double-radio wireless multimedia sensor node (WMSN) with a camera on board, designed for plant proximal monitoring. Camera sensor nodes represent an effective solution to monitor the crop at the leaf or fruit scale, with details that cannot be retrieved with the same precision through satellites or unnamed aerial vehicles (UAVs). From the technological point of view, WMSNs are characterized by very different requirements, compared to standard wireless sensor nodes; in particular, the network data rate results in higher energy consumption and incompatibility with the usage of battery-powered devices.

View Article and Find Full Text PDF

Underground mines are considered one of the riskiest facilities for human activities due to numerous accidents and geotechnical failures recorded worldwide over the last century, which have resulted in unsafe labor conditions, poor health outcomes, injuries, and fatalities. One significant cause of these accidents is the inadequate or nonexistent capacity for the real-time monitoring of safety conditions in underground mines. In this context, new emerging technologies linked to the Industry 4.

View Article and Find Full Text PDF

A Low-Cost Sensor Network for Monitoring Peatland.

Sensors (Basel)

September 2024

Computational Engineering and Design Group, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.

Peatlands across the world are vital carbon stores. However, human activities have caused the degradation of many sites, increasing their greenhouse gas emissions and vulnerability to wildfires. Comprehensive monitoring of peatlands is essential for their protection, tracking degradation and restoration, but current techniques are limited by cost, poor reliability and low spatial or temporal resolution.

View Article and Find Full Text PDF

Energy Performance of LR-FHSS: Analysis and Evaluation.

Sensors (Basel)

September 2024

Department of Network Engineering, Universitat Politècnica de Catalunya, C/Esteve Terradas, 7, 08860 Castelldefels, Spain.

Long-range frequency hopping spread spectrum (LR-FHSS) is a pivotal advancement in the LoRaWAN protocol that is designed to enhance the network's capacity and robustness, particularly in densely populated environments. Although energy consumption is paramount in LoRaWAN-based end devices, this is the first study in the literature, to our knowledge, that models the impact of this novel mechanism on energy consumption. In this article, we provide a comprehensive energy consumption analytical model of LR-FHSS, focusing on three critical metrics: average current consumption, battery lifetime, and energy efficiency of data transmission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!