Neuropeptide Y (NPY) inhibits spontaneous contraction of the mouse atrium by possible activation of the NPY1 receptor.

Auton Autacoid Pharmacol

Department of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.

Published: March 2017

AI Article Synopsis

  • Neuropeptide Y (NPY) activates specific receptors to produce effects on the heart, showing species-dependent differences, but its actions in mice were previously unexplored.
  • NPY triggered negative inotropic (reducing force of contraction) and chronotropic (reducing heart rate) effects in mouse atria, with a greater impact on contraction strength.
  • The negative effects were linked to the Y receptor, as they were diminished in mice treated with reserpine and completely abolished in those treated with pertussis toxin.

Article Abstract

Neuropeptide Y (NPY) causes various central and peripheral actions through activation of G-protein-coupled NPY receptors. Although a species-dependent difference in cardiac actions of NPY has been reported, the responses to NPY have not been examined in mice, widely used experimental animals. This study aimed to clarify the responses to NPY and the receptor subtype involved in the responses in mouse atrium. Neuropeptide Y caused negative inotropic and negative chronotropic actions in spontaneous beating right atria. Negative inotropic actions were more marked than negative chronotropic actions. Therefore, negative inotropic actions were studied in detail for evaluation of the NPY-induced cardiac actions in mouse atrium. Neuropeptide Y-induced negative inotropic actions were not affected by atropine but were abolished in the atria from pertussis toxin-treated mice. In isolated atrial preparations from reserpine-treated mice, NPY-induced negative inotropic actions were significantly attenuated. [Leu31, Pro34]-NPY, but not peptide YY, was effective in decreasing spontaneous contraction in atrial preparations. Although Y , Y , Y and Y receptor mRNAs were expressed almost equally in the brain, NPY receptor mRNA was dominantly expressed in the atrium. In conclusion, NPY caused negative inotropic and chronotropic actions through activation of the Y receptor in the mouse atrium. A high expression level of Y mRNA in the atrium suggests a functional role of NPY in the regulation of mouse cardiac contraction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aap.12055DOI Listing

Publication Analysis

Top Keywords

negative inotropic
24
mouse atrium
16
inotropic actions
16
chronotropic actions
12
actions
10
neuropeptide npy
8
spontaneous contraction
8
npy
8
actions activation
8
cardiac actions
8

Similar Publications

Background: Left ventricular (LV) myocardial contraction patterns can be assessed using LV mechanical dispersion (LVMD), a parameter closely associated with electrical activation patterns. Despite its potential clinical significance, limited research has been conducted on LVMD following myocardial infarction (MI). This study aims to evaluate the predictive value of cardiac magnetic resonance (CMR)-derived LVMD for adverse clinical outcomes and to explore its correlation with myocardial scar heterogeneity.

View Article and Find Full Text PDF

Cinnamic acid lowers blood pressure and reverses vascular endothelial dysfunction in rats.

J Food Drug Anal

December 2024

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad-22060, KP, Pakistan.

Cinnamic acid (CA) possesses important cardiovascular effects such as cardioprotective, antiatherogenic, antihyperlipidemic and antioxidant, which predicts its potential role in the treatment of hypertension. The study was executed to investigate the antihypertensive potential of CA in Sprague Dawley (SD) rats followed by evaluation in diverse vascular preparations. Invasive blood pressure monitoring technique was used in normotensive and hypertensive rats, under anesthesia.

View Article and Find Full Text PDF

Background: Albumin, a vital component in regulating human blood oncotic pressure, plays an important role in the prediction of prognosis in pediatric patients.Previous research identified significant differences in serum albumin levels of healthy and critically ill children.

Methods: The present study aims to investigate the correlation between albumin levels measured during pediatric intensive care unit(PICU) admission and clinical outcomes.

View Article and Find Full Text PDF

Stimulation of histamine H-receptors produces a positive inotropic effect in the human atrium.

Naunyn Schmiedebergs Arch Pharmacol

December 2024

Institute for Pharmacology and Toxicology, Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Straße 4, D-06097, Halle (Saale), Germany.

There is a controversy whether histamine H-receptor activation raises or lowers or does not affect contractility in the human heart. Therefore, we studied stimulation of H-receptors in isolated electrically stimulated (one beat per second) human atrial preparations (HAP). For comparison, we measured force of contraction in left atrial preparations (LA) from mice with overexpression of the histamine H-receptor in the heart (H-TG).

View Article and Find Full Text PDF

Does force depression resulting from shortening against series elasticity contribute to the activation dependence of optimum length?

Am J Physiol Cell Physiol

December 2024

Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, California, USA.

The optimum length for force generation () increases as activation is reduced, challenging classic theories of muscle contraction. Although the activation dependence of is seemingly consistent with length-dependent Ca sensitivity, this mechanism can't explain the apparent force dependence of , or the effect of series compliance on activation-related shifts in . We have tested a theory proposing that the activation dependence of relates to force depression resulting from shortening against series elasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!