Floral nectar can affect the fitness of insect-pollinated plants, through both attraction and manipulation of pollinators. Self-incompatible insect-pollinated plants receive more insect visits than their self-compatible relatives, and the nectar of such species might face increased risk of infestation by pathogens carried by pollinators than self-compatible plants. Proteins in nectar (nectarins) play an important role in protecting the nectar, but little is known regarding nectarins in self-incompatible species. The nectarins from a self-incompatible and insect-pollinated leguminous crop, Canavalia gladiata, were separated using two-dimensional electrophoresis and analysed using mass spectrometry. The predominant nectarin gene was cloned and the gene expression pattern investigated using quantitative real-time PCR. Chitinolytic activity in the nectar was tested with different substrates. The C. gladiata nectar proteome only has one predominant nectarin, an acidic class III chitinase (CaChi3). The full-length CaChi3 gene was cloned, coding for a protein of 298 amino acids with a predicted signal peptide. CaChi3 is very similar to members of the class III chitinase family, whose evolution is dominated by purifying selection. CaChi3 was expressed in both nectary and leaves. CaChi3 has thermostable chitinolytic activity according to glycol-chitin zymography or a fluorogenic substratem but has no lysozyme activity. Chitinase might be a critical protein component in nectar. The extremely simple nectar proteome in C. gladiata disproves the hypothesis that self-incompatible species always have more complex nectar proteomes. Accessibility of nectar might be a significant determinant of the evolutionary pressure to develop nectar defence mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.12583 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
School of Biological Sciences, Life Sciences Department, University of Bristol, Bristol BS8 1TQ, England.
Electric fields in terrestrial environments are used by caterpillars to detect their predators, as foraging cues by pollinators, and facilitate ballooning by spiders. This study shows that electric fields facilitate transportation and detection of hummingbirds in a guild of tropical phoretic mites. Hummingbird flower mites feed on nectar and pollen and complete their life cycle inside flowers.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES Paris), Paris, France - Sorbonne Université, 4 place Jussieu, 75005 Paris, France.
The evolutionary success of angiosperms, which make up more than 95 percent of the world's terrestrial flora, is largely based on their interactions with animal pollinators. Indeed, it is estimated that, on average, 87.5 percent of flowering plants are pollinated by animals.
View Article and Find Full Text PDFAoB Plants
January 2025
Department of Biology, 10 Bailey Drive, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
Drought-induced changes in floral traits can disrupt plant-pollinator interactions, influencing pollination and reproductive success. These phenotypic changes likely also affect natural selection on floral traits, yet phenotypic selection studies manipulating drought remain rare. We studied how drought impacts selection to understand the potential evolutionary consequences of drought on floral traits.
View Article and Find Full Text PDFSci Total Environ
January 2025
Salt Lake City Mosquito Abatement District, 2215 North 2200 West, Salt Lake City, UT 84116, United States.
As the primary pollinator for many crops, honey bees (Apis mellifera) are critically important to food production and the agricultural economy. Adult mosquito control is often suspected by the public and commercial beekeepers to harm honey bees, creating conflicts between industries. To investigate this matter, a two-year field study was conducted on vegetated wetlands in Salt Lake City, Utah, U.
View Article and Find Full Text PDFMolecules
January 2025
Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
Honeydew honey is less studied than nectar honey, although it is characterized by peculiar nutritional properties. This is mainly due to its challenging production, which leads to easy counterfeiting and difficult valorization. This contribution aims to provide a comprehensive characterization of the physico-chemical, palynological, functional, and food safety properties of a large sampling of honeydew honeys collected throughout Italy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!