Drosophila buzzatii and D. koepferae are sibling cactophilic species. The former breeds primarily on prickly pears (genus Opuntia) whereas the latter breeds on columnar cacti of the genera Cereus and Trichocereus, although with certain degree of niche overlapping. We examined the interspecific differences in diurnal temporal patterns of adult emergence from puparia and evaluated whether this behavior is affected by rearing in the different cactus hosts available in nature. We detected important host-dependent genetic variation for this trait differentially affecting the emergence schedule of these species. Diurnal pattern of emergence time was directly correlated with developmental time and negatively correlated with adult wing size, suggesting that early emergences are at least indirectly correlated with increased fitness. We discussed our results in terms of their putative effects on fitness and the genetic-metabolic pathways that would be presumably affected by host's nutritional-chemical differences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1744-7917.12484 | DOI Listing |
Pest Manag Sci
December 2024
Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
Background: Intentionally impairing the fecundity of mass-reared insects has important utility in controlling pest species. Typically, sterilized individuals are competed against wild counterparts, reducing pest population size. A novel consideration is creating biocontrol agents with lower reproductive capacity that are less likely to establish permanently or admix with wild populations, which are both emerging as legal barriers.
View Article and Find Full Text PDFNat Commun
December 2024
Aix-Marseille University, CNRS, IUSTI & Turing Centre for Living Systems (CENTURI), Marseille, France.
During their final transformation, insects emerge from the pupal case and deploy their wings within minutes. The wings deploy from a compact origami structure, to form a planar and rigid blade that allows the insect to fly. Deployment is powered by a rapid increase in internal pressure, and by the subsequent flow of hemolymph into the deployable wing structure.
View Article and Find Full Text PDFBiol Res
November 2024
Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77843-2475, USA.
Background: The Western honey bee, Apis mellifera, is an economically important pollinator, as well as a tractable species for studying the behavioral intricacies of eusociality. Honey bees are currently being challenged by multiple biotic and environmental stressors, many of which act concomitantly to affect colony health and productivity. For instance, developmental stress can lead workers to become precocious foragers and to leave the hive prematurely.
View Article and Find Full Text PDFInsects
November 2024
Key Laboratory on Biodiversity and Biosafety, Nanjing Institute of Environmental Sciences, MEE, Nanjing 210042, China.
Transgenic poplars have been used to control quarantine pests worldwide, such as the fall webworm (, FW). However, the studies on the resistance mechanism of FW to Cry toxins are limited. This study obtained an FW strain with 45-fold resistance to Cry1Ab toxin by continuous screening in the laboratory.
View Article and Find Full Text PDFParasite
November 2024
Insect Pest Control Laboratory, Joint FAO, IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
Human African trypanosomiasis (HAT) and African animal trypanosomosis (AAT) are devastating diseases spread by tsetse flies (Glossina spp.), affecting humans and livestock, respectively. Current efforts to manage these diseases by eliminating the vector through the sterile insect technique (SIT) require transportation of irradiated late-stage tsetse pupae under chilling, which has been reported to reduce the biological quality of emerged flies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!