Nuclear Overhauser enhancement (NOE) is a type of magnetization transfer using cross-relaxation. It originates from mobile macromolecules, which may have relevance to the evaluation of tumor features. We studied the value of NOE imaging at 7 and 3 T and suggest a utility for diagnosing human brain tumors. Two types of protein solution at different concentrations and pH values, and six normal Sprague Dawley (SD) rats, were used to detect NOE signal with a 7 T scanner. Then, six healthy volunteers and 11 patients with brain tumors (six gliomas and five meningiomas) were included at 3 T. Z-spectra were measured and NOE weighted (NOE*) images were acquired with a three-offset measurement. Wide spectral separation was shown at both 7 T and 3 T delineating the NOE peak in the Z-spectrum. The concentration dependence and pH independence of NOE were confirmed in phantom experiments, and NOE values were greater in white matter than in gray matter in vivo. At 3 T, data indicated that NOE* maps were slightly hypointense in gliomas and were not obviously different from meningiomas. Thus, NOE imaging may help distinguish benign from malignant tumors, and as such may contribute to diagnosing brain tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.3735 | DOI Listing |
In Vivo
December 2024
Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.
Background/aim: HyperArc (HA) is an automated planning technique enabling single-isocenter brain stereotactic radiotherapy (SRT); however, dosimetric outcomes may be influenced by the planner's expertise. This study aimed to assess the impact of institutional experience on the plan quality of HA-SRT for both single and multiple brain metastases.
Materials And Methods: Twenty patients who underwent HA-SRT for single metastasis between 2020 and 2021 comprised the earlier group, while those treated between 2022 and 2024 constituted the later group.
Anticancer Res
January 2025
Department of Medical Sciences, Clinical Chemistry, University of Uppsala, Uppsala, Sweden
Background/aim: Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant tumors in the central nervous system of adults. In practice, all patients with GBM experience relapse, and treatment options become limited following first-line therapy. We previously reported a new, successful treatment approach for a GBM patient, implemented in direct conjunction with surgical intervention.
View Article and Find Full Text PDFMagn Reson Imaging
December 2024
Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland.
Background: Brain tumors exhibit diverse genetic landscapes and hemodynamic properties, influencing diagnosis and treatment outcomes.
Purpose: To explore the relationship between MRI perfusion metrics (rCBV, rCBF), genetic markers, and contrast enhancement patterns in gliomas, aiming to enhance diagnostic accuracy and inform personalized therapeutic strategies. Additionally, other radiological features, such as the T2/FLAIR mismatch sign, are evaluated for their predictive utility in IDH mutations.
Biochim Biophys Acta Mol Basis Dis
December 2024
Department of Biochemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India. Electronic address:
Glioblastoma (GBM) is foremost the most aggressive primary brain tumor, presenting extensive therapeutic challenges due to its high invasiveness, genetic complexity, and resistance to established treatments. Despite substantial advances in surgical and chemotherapeutic interventions, the median survival rate for patients is only 14.6 months, and the prognosis remains poor.
View Article and Find Full Text PDFJ Neurosurg Case Lessons
December 2024
Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli," Naples, Italy.
Background: Exophytic tumors of the calvaria (ETCs) remain a challenging pathology because of their complex management. The authors discuss the case of a woman with a large exophytic mass of the right frontotemporal region and underline their decision-making process on the management of this unique case and possible similar ones.
Observations: Neuroradiological findings showed a calvarial tumor with both epicranial and intracranial extension involving the frontotemporal bone with a mixed component (lytic and sclerotic) and dural infiltration with a pseudonodular pattern.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!