AI Article Synopsis

  • This study examines how biventricular pacing (BiVp) combined with the heart's natural electrical activity (BiVp-fusion) may enhance cardiac resynchronization therapy (CRT) effectiveness.
  • Researchers tested different pacing delay combinations on 17 patients to find the best settings that improve blood pressure response during treatment.
  • The findings revealed that nearly all patients displayed BiVp-fusion during optimal pacing settings, suggesting that this approach could be instrumental in improving CRT outcomes through noninvasive adjustments to device settings.

Article Abstract

Background: Previous reports suggest that biventricular pacing (BiVp) fused with intrinsic conduction (BiVp-fusion, triple wavefront fusion) is associated with improved resynchronization compared to pure-BiVp in cardiac resynchronization therapy (CRT). This study aimed to assess the association between acute hemodynamic benefit of CRT and signs of BiVp-fusion by using a novel electrogram (EGM)-based method.

Methods: In 17 patients undergoing CRT implantation, 28 combinations of atrioventricular (AV) and interventricular (VV) delays were applied while invasively measuring acute hemodynamic response based on maximum rate of left ventricular (LV) pressure rise (LV dP/dt ) to assess optimal BiVp settings. BiVp-fusion was noted if farfield signal (caused by first intrinsic ventricular depolarization) was seen prior to right ventricular (RV) pacing (RVp) artifact on integrated bipolar RV EGM, or QRS morphology changed compared to pure-BiVp (short AV-delay) as seen on electrocardiogram (ECG).

Results: Mean optimal RVp timing was at 98 ± 17% of intrinsic right atrial (RA)-RV (interval from right atrial pace or sense to RV farfield signal) interval, while preactivating the LV at 50 ± 11% of RA-RV (interval from right atrial pace or sense to RV sense interval) interval. BiVp-fusion was noted in 16 of 17 (94%) patients on ECG during optimal BiVp. Eight of these patients showed intrinsic farfield signal prior to RVp artifact on RV EGM. In the remaining eight, the RVp was paced just within the RA-RV interval with a mean of 25 ± 14 ms prior to the onset; therefore, the intrinsic farfield was masked.

Conclusion: Optimal hemodynamic BiVp facilitates triple wavefront fusion, by pacing the RV around the onset of intrinsic farfield signal on RV EGM, while preactivating the LV. Aiming at BiVp-fusion could be a target for noninvasive EGM-based CRT device setting optimization.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pace.13118DOI Listing

Publication Analysis

Top Keywords

farfield signal
16
triple wavefront
12
wavefront fusion
12
acute hemodynamic
12
ra-rv interval
12
intrinsic farfield
12
biventricular pacing
8
compared pure-bivp
8
optimal bivp
8
rvp artifact
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!