Metabolic flexibility is defined as the ability to adapt substrate oxidation rates in response to changes in fuel availability. The inability to switch between the oxidation of lipid and carbohydrate appears to be an important feature of chronic disorders such as obesity and type 2 diabetes. Laboratory assessment of metabolic flexibility has traditionally involved measurement of the respiratory quotient (RQ) by indirect calorimetry during the fasted to fed transition (e.g. mixed meal challenge) or during a hyperinsulinaemic-euglycaemic clamp. Under these controlled experimental conditions, 'metabolic inflexibility' is characterized by lower fasting fat oxidation (higher fasting RQ) and/or an impaired ability to oxidize carbohydrate during feeding or insulin-stimulated conditions (lower postprandial or clamp RQ). This experimental paradigm has provided fundamental information regarding the role of substrate oxidation in the development of obesity and insulin resistance. However, the key determinants of metabolic flexibility among relevant clinical populations remain unclear. Herein, we propose that habitual physical activity levels are a primary determinant of metabolic flexibility. We present evidence demonstrating that high levels of physical activity predict metabolic flexibility, while physical inactivity and sedentary behaviours trigger a state of metabolic 'inflexibility', even among individuals who meet physical activity recommendations. Furthermore, we describe alternative experimental approaches to studying the concept of metabolic flexibility across a range of activity and inactivity. Finally, we address the promising use of strategies that aim to reduce sedentary behaviours as therapy to improve metabolic flexibility and reduce weight gain risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899985 | PMC |
http://dx.doi.org/10.1113/JP273282 | DOI Listing |
Nucleic Acids Res
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, P.R. China.
We present a robust 'splice-at-will' CRISPR RNA (crRNA) engineering mechanism that overcomes the limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in directly detecting ultrashort RNAs. In this strategy, an intact Cas12a crRNA can be split from almost any site of the spacer region to obtain a truncated crRNA (tcrRNA) that cannot activate Cas12a even after binding an auxiliary DNA activator. While splicing tcrRNAs with a moiety of ultrashort RNA, the formed combination can work together to activate Cas12a efficiently, enabling 'splice-at-will' crRNA engineering.
View Article and Find Full Text PDFMediterr J Hematol Infect Dis
January 2025
Department of Diabetes and Endocrinology, Whittington Hospital, University College London, London, UK.
Background: Current guidelines for screening glucose dysregulation (GD) in patients with transfusion-dependent thalassemia (TDT) recommend an annual 2-hour oral glucose tolerance test (OGTT) starting at the age of 10 years.
Objective: Assessment of adherence to OGTT screening in patients with TDT.
Methods: A questionnaire was distributed to 18 Thalassemia Centers in 10 different countries, targeting factors influencing adherence to annual OGTT screening in specialized multidisciplinary pediatric and adult TDT units and identifying strategies to improve adherence to OGTT in TDT patients.
Front Immunol
January 2025
Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
Background: Epstein-Barr virus (EBV) is a significant global public health concern because of its association with various malignancies and autoimmune diseases. Over 90% of the global population is chronically infected with EBV, impacting numerous cancer-related cases annually. However, none of the effective prophylactic vaccines against EBV is approved at present.
View Article and Find Full Text PDFVirulence
December 2025
Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea.
(Mab), a nontuberculous mycobacterium, is increasing in prevalence worldwide and causes treatment-refractory pulmonary diseases. However, how Mab rewires macrophage energy metabolism to facilitate its survival is poorly understood. We compared the metabolic profiles of murine bone marrow-derived macrophages (BMDMs) infected with smooth (S)- and rough (R)-type Mab using extracellular flux technology.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2025
Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, China.
Coastal wetlands are rich in terrestrial organic carbon. Recent studies suggest that microbial consortia play a role in lignin degradation in coastal wetlands, where lignin turnover rates are likely underestimated. However, the metabolic potentials of these consortia remain elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!