This study applies Raman microspectroscopy to differentiate the chemical components in printing inks of different brands, colors, and type using the 532 nm and 785 nm excitation wavelengths. Spectra were collected from 319 inks (78 inkjet, 76 toner, 79 offset, and 86 intaglio) representing various colors. Comparisons were performed to calculate discrimination capability percentages for each ink type. Overall, Raman microspectroscopy differentiates according to the following hierarchy: intaglio (96%), inkjet (92%), offset (90%), and toner (61%). The ability of Raman microspectroscopy to differentiate between same-colored inks from different brands was dependent on the color and ink analyzed. Based on ink color, the discrimination capability ranged from 75 to 94% (inkjet), 0 to 86% (toner), and 0 to 77% (offset). Copper phthalocyanine was detected in cyan inks and various intaglio inks, while carbon black was identified in black inkjet, offset, and intaglio inks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1556-4029.13508 | DOI Listing |
J Phys Chem Lett
January 2025
Biomolecular Physics Department, Faculty of Physics, Babeş-Bolyai University, 1 M. Kogalniceanu Str., 400084 Cluj-Napoca, Romania.
Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful tool for analyzing nucleic acids due to its exceptional sensitivity and specificity. This study rigorously investigates not only the impact of polyA strands of different lengths (, 5, 10, 15, and 20 adenine bases) but also their distinct grafting strategy (SH at 5' and NH at 5' end) on the SERS signal of DNA strand using synthesized gold nanoparticles (AuNPs) on graphene oxide sheets (GO-AuNPs). By comparing the thiol vs amine bonding onto the GO-AuNP nanoplatform, we found a strong correlation between the adenine peak intensity at 732 cm and the strand length for both grafting methods (SH at 5' end or NH at 5' end).
View Article and Find Full Text PDFEnviron Int
December 2024
Center for Reproductive Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China. Electronic address:
Microplastics (MPs) are pervasive environmental contaminants, resulting in unavoidable human exposure. This study identified MPs in follicular fluid and investigated the specific MPs and mechanisms that adversely affect oocytes. MPs in the follicular fluid of 44 infertile women undergoing assisted reproductive technology were measured using Raman microspectroscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokko, Nada Kobe 657-8501, Japan.
Manufacturing using adhesion technology has attracted much attention. Examples of adhesion include the lay-up of carbon fiber reinforced thermoplastic prepregs and the lamination of food packaging. In single-component adhesion systems, the analysis of the boundary region poses challenges because of the absence of chemical and physical discrimination at the adhesion interphase.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia.
Purpose: Atopic dermatitis (AD) is the most common chronic inflammatory skin disease that severely impairs patient's life quality and represents significant therapeutic challenge due to its pathophysiology arising from skin barrier dysfunction. Topical corticosteroids, the mainstay treatment for mild to moderate AD, are usually formulated into conventional dosage forms that are impeded by low drug permeation, resulting in high doses with consequent adverse effects, and also lack properties that would strengthen the skin barrier. Herein, we aimed to develop biomimetic lamellar lyotropic liquid crystals (LLCs), offering a novel alternative to conventional AD treatment.
View Article and Find Full Text PDFMicromodification in bulk undoped polymethylmethacrylate (PMMA) by single focused (numerical aperture (NA) = 0.25), 1030-nm 250-fs laser pump pulses was explored by pump self-transmittance; optical, 3D-scanning confocal photoluminescence (PL); Raman micro-spectroscopy; and optical polarimetric and interferometric microscopy. Starting from the threshold pulse energy = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!