Evaluation of the Sepsis Flow Chip assay for the diagnosis of blood infections.

PLoS One

Department of Microbiology, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL - FISABIO), Alicante, Spain.

Published: September 2017

Background: Blood infections are serious complex conditions that generally require rapid diagnosis and treatment. The big challenge is to reduce the time necessary to make a diagnosis with current clinical microbiological methods so as to improve the treatment given to patients.

Methods: In this study, we assess for the first time the Sepsis Flow Chip assay, which is a novel diagnostic assay for simultaneous rapid-detection of the vast majority of bloodstream pathogens, including Gram-positive and Gram-negative bacteria and fungi, in the same assay, and for the detection of most common antibiotic resistance genes. The SFC assay is based on multiplex PCR and low density DNA arrays.

Results: Positive blood cultures from 202 consecutive bacteremia patients were analyzed by SFC assay and the results were compared with the results obtained by the gold standard methodology used in clinical microbiology diagnostic laboratories (EUCAST guidelines). SFC assay overall sensitivity and specificity for bacterial identification were 93.3% and 100% respectively and sensitivity and specificity for the identification of antibiotic genetic resistance determinants were 93.6% and 100% respectively.

Conclusions: This is the first evaluation of SFC assay in clinical samples. This new method appears to be very promising by combining the high number of distinct pathogens and genetic resistance determinants identified in a single assay. Further investigations should be done to evaluate the usefulness of this assay in combination with clinical multidisciplinary groups (stewardship), in order for the results to be applied appropriately to the management of patients`infectious processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5436663PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177627PLOS

Publication Analysis

Top Keywords

sfc assay
16
assay
10
sepsis flow
8
flow chip
8
chip assay
8
blood infections
8
sensitivity specificity
8
genetic resistance
8
resistance determinants
8
evaluation sepsis
4

Similar Publications

Automated high-throughput RP-HPLC-MS and SFC-MS analytical and purification platforms to support drug discovery.

J Chromatogr A

December 2024

Chemistry Capabilities, Analytical & Purification, Global Discovery Chemistry. Janssen Research & Development, a Division of Janssen Pharmaceuticals, Johnson & Johnson company, 1400 McKean Rd. Spring House PA 19477, USA.

In recent years, the need to accelerate drug discovery processes in the pharmaceutical industry has revived the interest of implementing automated workflows, allowing the simultaneous processing of multiple samples on global processes that are referred as High-Throughput Purification (HTP). In this work, SAPIO Laboratory Information Management System (SAPIO LIMS) has been customized at the HTP laboratories of Janssen R&D to accommodate the needs of global purification groups on several automated HTP workflows, integrating Analytical Studio™ data processing tool on multiple steps. Herein we describe the workflow details from crude analysis via RP-LC-MS or SFC-MS systems to sample redissolution and delivery to Compound Logistics (CL) in tubes ready for assay plate preparation.

View Article and Find Full Text PDF

Purpose: This study investigated the bond strength between short fiber-reinforced resin composite (SFC) and dentin following air abrasion with various types of abrasive particles.

Methods: A total of 120 human molars were prepared for a shear bond strength (SBS) test of the resin composite. The teeth were divided into 12 groups (n = 10/group) based on the air abrasion particle used.

View Article and Find Full Text PDF

Using space-filling curves and fractals to reveal spatial and temporal patterns in neuroimaging data.

J Neural Eng

January 2025

Center for Complex Systems and Brain Sciences, Universidad Nacional de San Martin Escuela de Ciencia Y Tecnologia, 25 de Mayo y Francia, San Martín, Buenos Aires, 1650, ARGENTINA.

Objective Magnetic resonance imaging (MRI), functional MRI (fMRI) and other neuroimaging techniques are routinely used in medical diagnosis, cognitive neuroscience or recently in brain decoding. They produce three- or four-dimensional scans reflecting the geometry of brain tissue or activity, which is highly correlated temporally and spatially. While there exist numerous theoretically guided methods for analyzing correlations in one-dimensional data, they often cannot be readily generalized to the multidimensional geometrically embedded setting.

View Article and Find Full Text PDF

Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation.

View Article and Find Full Text PDF

Chronic Fatigue Syndrome (CFS) is a complex disorder characterized by prolonged, unexplained fatigue and challenging diagnosis. We report the case of a 35-year-old Japanese woman with CFS who had experienced chronic fatigue since the age of 11 years. Despite treatment with modafinil, methylphenidate, levocarnitine, and ubiquinone, the symptoms persisted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!