New fossils from the latest Pliocene portion of the Tatrot Formation exposed in the Siwalik Hills of northern India represent the first fossil record of a darter (Anhingidae) from India. The darter fossils possibly represent a new species, but the limited information on the fossil record of this group restricts their taxonomic allocation. The Pliocene darter has a deep pit on the distal face of metatarsal trochlea IV not reported in other anhingids, it has an open groove for the m. flexor perforatus et perforans digiti II tendon on the hypotarsus unlike New World anhingid taxa, and these darter specimens are the youngest of the handful of Neogene records of the group from Asia. These fossil specimens begin to fill in a significant geographic and temporal gap in the fossil record of this group that is largely known from other continents and other time periods. The presence of a darter and pelican (along with crabs, fish, turtles, and crocodilians) in the same fossil-bearing horizon strongly indicates the past presence of a substantial water body (large pond, lake, or river) in the interior of northern India in the foothills of the Himalayan Mountains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5443482 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0177129 | PLOS |
Sci Total Environ
January 2025
School of Biological Sciences, University of Adelaide, Adelaide, SA 5000, Australia; The Environment Institute, University of Adelaide, Adelaide, SA 5000, Australia; Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark; Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark. Electronic address:
Human overexploitation contributed strongly to the loss of hundreds of bird species across Oceania, including nine giant, flightless birds called moa. The inevitability of anthropogenic moa extinctions in New Zealand has been fiercely debated. However, we can now rigorously evaluate their extinction drivers using spatially explicit demographic models capturing species-specific interactions between moa, natural climates and landscapes, and human colonists.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK.
Negative scaling relationships between both speciation and extinction rates, on the one hand, and the age or duration of organismal groups on the other, are pervasive and recovered in both molecular phylogenetic and fossil time series. The agreement between molecular and fossil data hints at a universal cause and potentially at incongruence between micro- and macroevolution. However, the existence of negative rate scaling in fossil time series has not undergone the same level of scrutiny as in molecular data.
View Article and Find Full Text PDFCurr Biol
January 2025
Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK.
Dinosaurs dominated Mesozoic terrestrial ecosystems for ∼160 million years, but their biogeographic origin remains poorly understood. The earliest unequivocal dinosaur fossils appear in the Carnian (∼230 Ma) of southern South America and Africa, leading most authors to propose southwestern Gondwana as the likely center of origin. However, the high taxonomic and morphological diversity of these earliest assemblages suggests a more ancient evolutionary history that is currently unsampled.
View Article and Find Full Text PDFJ Hum Evol
January 2025
Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg WITS, 2050, South Africa; Department of Anthropology, University of Wisconsin, Madison, WI 53706, USA.
The oldest deposit at the hominin-bearing cave of Swartkrans, South Africa, is the Lower Bank of Member 1, dated to ca. 2.2 million years ago.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Evolutionary Research Group, University of Vienna, Vienna, Austria.
The Late Jurassic fossil deposits of southern Germany, collectively known as the 'Solnhofen Archipelago', are one of the world's most important sources of Mesozoic vertebrates. Complete skeletons of cartilaginous fishes (Chondrichthyes), whose skeletal remains are rare in the fossil record and therefore all the more valuable, are represented, among others, by exceptionally well-preserved rays (superorder Batomorphii). Despite their potential for research in several areas, including taxonomy, morphology, ecology, and phylogeny, the number of studies on these chondrichthyans is still very limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!