Integrator is an RNA polymerase II (RNAPII)-associated complex that was recently identified to have a broad role in both RNA processing and transcription regulation. Importantly, its role in human development and disease is so far largely unexplored. Here, we provide evidence that biallelic Integrator Complex Subunit 1 (INTS1) and Subunit 8 (INTS8) gene mutations are associated with rare recessive human neurodevelopmental syndromes. Three unrelated individuals of Dutch ancestry showed the same homozygous truncating INTS1 mutation. Three siblings harboured compound heterozygous INTS8 mutations. Shared features by these six individuals are severe neurodevelopmental delay and a distinctive appearance. The INTS8 family in addition presented with neuronal migration defects (periventricular nodular heterotopia). We show that the first INTS8 mutation, a nine base-pair deletion, leads to a protein that disrupts INT complex stability, while the second missense mutation introduces an alternative splice site leading to an unstable messenger. Cells from patients with INTS8 mutations show increased levels of unprocessed UsnRNA, compatible with the INT function in the 3'-end maturation of UsnRNA, and display significant disruptions in gene expression and RNA processing. Finally, the introduction of the INTS8 deletion mutation in P19 cells using genome editing alters gene expression throughout the course of retinoic acid-induced neural differentiation. Altogether, our results confirm the essential role of Integrator to transcriptome integrity and point to the requirement of the Integrator complex in human brain development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466333PMC
http://dx.doi.org/10.1371/journal.pgen.1006809DOI Listing

Publication Analysis

Top Keywords

integrator complex
12
transcriptome integrity
8
brain development
8
rna processing
8
ints8 mutations
8
gene expression
8
ints8
6
integrator
5
complex
5
human
4

Similar Publications

Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.

View Article and Find Full Text PDF

Decapod crustaceans regulate molting through steroid molting hormones, ecdysteroids, synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers.

View Article and Find Full Text PDF

Flail foot is a condition characterized by a significant weakness in ankle dorsiflexion, resulting in limited or no active mobility in the ankle. To address this issue, we described a novel approach called tenodesis, which has been developed for ankle joint stabilization. This technique utilizes the patient's tendons to minimize potential complications.

View Article and Find Full Text PDF

Multimodal artificial intelligence system for detecting a small esophageal high-grade squamous intraepithelial neoplasia: A case report.

World J Gastrointest Endosc

January 2025

Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.

Background: Recent advancements in artificial intelligence (AI) have significantly enhanced the capabilities of endoscopic-assisted diagnosis for gastrointestinal diseases. AI has shown great promise in clinical practice, particularly for diagnostic support, offering real-time insights into complex conditions such as esophageal squamous cell carcinoma.

Case Summary: In this study, we introduce a multimodal AI system that successfully identified and delineated a small and flat carcinoma during esophagogastroduodenoscopy, highlighting its potential for early detection of malignancies.

View Article and Find Full Text PDF

Spatial distribution-based progression of spinal cord injury pathology: a key role for neuroimmune cells.

Front Immunol

January 2025

Shanghai TCM-Integrated Hospital, Shanghai University of TCM, Department of Neurosurgery, Shanghai, China.

An external trauma, illness, or other pathological cause can harm the structure and function of the spinal cord, resulting in a significant neurological disorder known as spinal cord injury (SCI). In addition to impairing movement and sensory functions, spinal cord injury (SCI) triggers complex pathophysiological responses, with the spatial dynamics of immune cells playing a key role. The inflammatory response and subsequent healing processes following SCI are profoundly influenced by the spatial distribution and movement of immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!