A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Oxygen Consumption Rates of Nondegenerate and Degenerate Human Intervertebral Disc Cells. | LitMetric

AI Article Synopsis

  • The study measured oxygen consumption rates (OCR) in human intervertebral disc (IVD) cells to compare nondegenerate and degenerate states under different glucose levels.
  • Results showed that degenerate IVD cells had an OCR three to five times higher than nondegenerate cells, particularly thriving in low-glucose conditions.
  • The findings indicate that IVD degeneration leads to a cellular change affecting oxygen consumption, helping to better understand disc health and disease.

Article Abstract

Study Design: In vitro measurements of the oxygen consumption rates (OCR) of human intervertebral disc (IVD) cells.

Objective: The aim of this study was to determine the differences in the OCR of nondegenerate and degenerate human annulus fibrosus (AF), nucleus pulposus (NP), and cartilage endplate (CEP) cells at different glucose concentrations.

Summary Of Background Data: The avascular nature of the IVD creates a delicate balance between rate of nutrient transport through the matrix and rate of disc cell consumption necessary to maintain tissue health. Previous studies have shown a dependence of OCR for animal (e.g., bovine and porcine) IVD cells on oxygen level and glucose concentration. However, the OCR of nondegenerate human IVD cells compared to degenerate human IVD cells at different glucose concentrations has not been investigated.

Methods: IVD cells were isolated from the AF, NP, and CEP regions of human cadaver spines and surgical samples. The changes in oxygen concentration were recorded when cells were sealed in a metabolic chamber. The OCR of cells was determined by curve fitting using the Michaelis-Menton equation.

Results: Under identical cell culture conditions, the OCR of degenerate human IVD cells was three to five times greater than that of nondegenerate human IVD cells. The degenerate IVD cells cultured in low-glucose medium (1 mmol/L) exhibited the highest OCR compared to degenerate cells cultured at higher glucose levels (i.e., 5 mmol/L, 25 mmol/L), whereas no significant differences in OCR were found among the nondegenerate IVD cells for all glucose levels.

Conclusion: Considering the significantly higher OCR and unique response to glucose of degenerate human IVD cells, the degeneration of the IVD is associated with a cell phenotypic change related to OCR. The OCR of IVD cells reported in this study will be valuable for understanding human IVD cellular behavior and tissue nutrition in response to disc degeneration.

Level Of Evidence: N/A.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701878PMC
http://dx.doi.org/10.1097/BRS.0000000000002252DOI Listing

Publication Analysis

Top Keywords

ivd cells
40
human ivd
24
degenerate human
20
cells
15
ivd
14
ocr nondegenerate
12
cells glucose
12
ocr
11
human
10
oxygen consumption
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!