It is often desirable to be able to recognize when inputs to a recognition function learned in a supervised manner correspond to classes unseen at training time. With this ability, new class labels could be assigned to these inputs by a human operator, allowing them to be incorporated into the recognition function-ideally under an efficient incremental update mechanism. While good algorithms that assume inputs from a fixed set of classes exist, e.g. , artificial neural networks and kernel machines, it is not immediately obvious how to extend them to perform incremental learning in the presence of unknown query classes. Existing algorithms take little to no distributional information into account when learning recognition functions and lack a strong theoretical foundation. We address this gap by formulating a novel, theoretically sound classifier-the Extreme Value Machine (EVM). The EVM has a well-grounded interpretation derived from statistical Extreme Value Theory (EVT), and is the first classifier to be able to perform nonlinear kernel-free variable bandwidth incremental learning. Compared to other classifiers in the same deep network derived feature space, the EVM is accurate and efficient on an established benchmark partition of the ImageNet dataset.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2017.2707495 | DOI Listing |
Adv Orthop
January 2025
Orlando Health Jewett Orthopedic Institute, Orlando, Florida, USA.
Advances in artificial intelligence (AI), machine learning, and publicly accessible language model tools such as ChatGPT-3.5 continue to shape the landscape of modern medicine and patient education. ChatGPT's open access (OA), instant, human-sounding interface capable of carrying discussion on myriad topics makes it a potentially useful resource for patients seeking medical advice.
View Article and Find Full Text PDFFront Antibiot
March 2023
Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye.
Streptococcus pneumoniae is one of the major concerns of clinicians and one of the global public health problems. This pathogen is associated with high morbidity and mortality rates and antimicrobial resistance (AMR). In the last few years, reduced genome sequencing costs have made it possible to explore more of the drug resistance of S.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
Background: The pathological sub-classification of lung cancer is crucial in diagnosis, treatment and prognosis for patients. Quick and timely identification of pathological subtypes from imaging examinations rather than histological tests could help guiding therapeutic strategies. The aim of the study is to construct a non-invasive radiomics-based model for predicting the subtypes of lung cancer on brain metastases (BMs) from multiple magnetic resonance imaging (MRI) sequences.
View Article and Find Full Text PDFHeliyon
July 2024
College of Engineering and IT, University of Dubai, Academic City, 14143, Dubai, United Arab Emirates.
This study proposes a hierarchical automated methodology for detecting brain tumors in Magnetic Resonance Imaging (MRI), focusing on preprocessing images to improve quality and eliminate artifacts or noise. A modified Extreme Learning Machine is then used to diagnose brain tumors that are integrated with the Modified Sailfish optimizer to enhance its performance. The Modified Sailfish optimizer is a metaheuristic algorithm known for efficiently navigating optimization landscapes and enhancing convergence speed.
View Article and Find Full Text PDFTransl Androl Urol
December 2024
Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Background: Transitional cell carcinoma (TCC) of the renal pelvis is a rare cancer within the urinary system. However, the prognosis is not entirely satisfactory. This study aims to develop a clinical model for predicting cancer-specific survival (CSS) at 1-, 3-, and 5-year for White Americans with renal pelvic TCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!