Goal: Critical closing pressure (CrCP) is the arterial blood pressure (ABP) threshold, below which small arterial vessels collapse and cerebral blood flow ceases. Here, we aim to compare three methods for CrCP estimation in scenario of a controlled increase in intracranial pressure (ICP), induced by infusion tests performed in patients with suspected normal pressure hydrocephalus (NPH).
Methods: Computer recordings of directly-measured ICP, ABP, and transcranial Doppler cerebral blood flow velocity (CBFV), from 37 NPH patients undergoing infusion tests, were retrospectively analyzed. The CrCP was calculated with three methods: one with the first harmonics ratio of the pulse waveforms of ABP and CBFV (CrCPA) and two methods based on a model of cerebrovascular impedance, as functions of both cerebral perfusion pressure (CrCPinv), and of ABP (CrCPninv).
Conclusion: All methods give similar results in response to ICP changes. In the case of individual CrCP measurements for each patient, CrCPA may provide negative, nonphysiological values. Invasive critical closing pressure is most sensitive to variations in ICP and CPP and can be used as an indicator of the cerebrospinal and the cerebrovascular system status during infusion tests.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2017.2707547 | DOI Listing |
Adv Sci (Weinh)
January 2025
Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China.
Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG).
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
Cardiac Surgery Critical Care Center Inpatient Ward 1, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
Objective: To investigate the effectiveness of initial hemostatic resuscitation(IHR) on the treatment of bleeding with recombinant human coagulation factor VIIa after cardiac surgery.
Methods: The clinical data of patients who received rFVIIa hemostatic treatment after cardiac surgery at Beijing Anzhen Hospital, Capital Medical University, from January 1, 2021, to December 31, 2021 were retrospectively collected. A total of 152 cases were included in the study.
Neuroscience
January 2025
Chemistry Department (emeritus), Willamette University, Salem, OR, USA.
In two recent papers (Curr Trends Neurol 17: 83-98, 2023; J Neurophysiol 124: 1029-1044, 2020), James Lee has argued that his Transmembrane Electrostatically-Localized Cations (TELC) hypothesis offers a model of neuron transmembrane potentials that is superior to Hodgkin-Huxley classic cable theory and the Goldman-Hodgkin-Katz (GHK) equation. Here we examine critically the arguments in these papers, finding key weaknesses and fallacies. We also examine closely the literature cited by Lee, and find (i) strong support for the GHK equation; (ii) published measurements that contradict TELC predictions; and (iii) no convincing support for the TELC hypothesis.
View Article and Find Full Text PDFCrit Rev Oncol Hematol
January 2025
Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Electronic address:
Circular RNAs (circRNAs) have emerged as critical regulators in cancer biology, contributing to various cancer hallmarks, including cell proliferation, apoptosis, metastasis, and drug resistance. Defined by their covalently closed loop structure, circRNAs possess unique characteristics like high stability, abundance, and tissue-specific expression. These non-coding RNAs function through mechanisms such as miRNA sponging, interactions with RNA-binding proteins (RBPs), and modulating transcription and splicing.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Downstream Processing, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01 138668, Singapore. Electronic address:
Given the complexities of continuous bioprocessing, it is critical to thoroughly investigate the process parameters unique to multi-column chromatography (MCC) and their potential impacts. However, existing studies have focused on either loading densities or residence time at steady states only, and their combined impact on critical quality attributes (CQAs) especially during transient phases were less known. In this study, we investigated the impact of critical process parameters during both steady-state and transient phases (start-up, close-down, and intermediate perturbation) through full factorial design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!