A pot culture experiment was conducted for 90 days for the evaluation of oil and total petroleum hydrocarbon (TPH) degradation in vegetated and non-vegetated treatments of real-field oil-sludge-contaminated soil. Five different treatments include (T1) control, 2% oil-sludge-contaminated soil; (T2), augmentation of microbial consortium; (T3), Vertiveria zizanioides; (T4), bio-augmentation along with V. zizanioides; and (T5), bio-augmentation with V. zizanioides and bulking agent. During the study, oil reduction, TPH, and degradation of its fractions were determined. Physico-chemical and microbiological parameters of soil were also monitored simultaneously. At the end of the experimental period, oil content (85%) was reduced maximally in bio-augmented rhizospheric treatments (T4 and T5) as compared to control (27%). TPH reduction was observed to be 88 and 89% in bio-augmented rhizospheric soil (T4 and T5 treatments), whereas in non-rhizospheric and control (T2 and T1), TPH reduction was 78 and 37%, respectively. Degradation of aromatic fraction after 90 days in bio-augmented rhizosphere of treatments T4 and T5 was found to 91 and 92%, respectively. In microbial (T2) and Vertiveria treatments (T3), degradation of aromatic fraction was 83 and 68%, respectively. A threefold increase in soil dehydrogenase activity and noticeable changes in organic carbon content and water-holding capacity were also observed which indicated maximum degradation of oil and its fractions in combined treatment of plants and microbes. It is concluded that the plant-microbe soil system helps to restore soil quality and can be used as an effective tool for the remediation of oil-sludge-contaminated sites.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2017.1328388DOI Listing

Publication Analysis

Top Keywords

tph degradation
8
oil-sludge-contaminated soil
8
soil treatments
8
zizanioides bio-augmentation
8
bio-augmentation zizanioides
8
bio-augmented rhizospheric
8
tph reduction
8
degradation aromatic
8
aromatic fraction
8
soil
7

Similar Publications

Olanzapine exposure disordered lipid metabolism, gut microbiota and behavior in zebrafish (Danio rerio).

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

College of Fisheries, Henan Normal University, Xinxiang 453007, PR China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China. Electronic address:

Olanzapine (OLZ) is widely used in the treatment of schizophrenia, and its metabolic side effects have garnered significant attention in recent years. Despite this, the specific side effects of OLZ and the underlying mechanisms remain inadequately understood. To address this gap, zebrafish (Danio rerio) were exposed to OLZ at concentrations of 35.

View Article and Find Full Text PDF

Exploring Novel Fungal-Bacterial Consortia for Enhanced Petroleum Hydrocarbon Degradation.

Toxics

December 2024

Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil.

Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified.

View Article and Find Full Text PDF

Programming a bacterial biosensor for directed evolution of tryptophan hydroxylase via high-throughput droplet sorting.

Biosens Bioelectron

March 2025

Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin, 300457, PR China. Electronic address:

The modification of tryptophan hydroxylase (TPH) for the biosynthesis of 5-hydroxytryptophan (5-HTP) has recently become a focus of research. In this study, we established a droplet-based ultrahigh-throughput microfluidic screening platform (DTSP) to improve the industrial properties of TPH, whereas a bacterial biosensor for L-tryptophan (L-Trp) detection was engineered to improve sensitivity. The promoter pJ23111 achieved a strong negative correlation between the L-Trp concentration and the fluorescence output of the biosensor.

View Article and Find Full Text PDF

Functional microbiome and phytoremediation enhance soil diesel degradation via enzyme activity.

J Environ Manage

December 2024

Carbon Neutral & Energy Research Center, National Kaohsiung University of Science and Technology, 1, University Rd., Yanchau, Kaohsiung, 811, Taiwan, ROC. Electronic address:

Article Synopsis
  • This study explores how combining a hydrogen-producing microbiome with phytoremediation improves the breakdown of diesel in contaminated soil, focusing on enhanced enzyme activity.
  • Key soil changes included increased moisture from 12.5% to 20%, a shift in pH to an alkaline level of 8.0-8.5, and improved organic matter, all supporting microbial activity.
  • The combined approach achieved a 78.1% reduction in total petroleum hydrocarbons, significantly outperforming traditional methods, while also boosting microbial populations and Bermuda grass survival rates.
View Article and Find Full Text PDF

Arsenic Enhances the Degradation of Middle-Chain Petroleum Hydrocarbons by sp. 2021 Under Their Combined Pollution.

Microorganisms

November 2024

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China.

The efficient and green remediation of petroleum hydrocarbon (PH) contamination has emerged as a viable strategy for environmental management. Here, we investigated the interaction between arsenic and PH degradation by sp. 2021 under their combined pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!