Acute myelogenous leukemia (AML) is a heterogeneous group of malignancies driven by genetic mutations and deregulated epigenetic control. Relapse/refractory disease remains frequent in younger patients and even more so in older patients, including treatment with epigenetic drugs in this age group, mainly with hypomethylating agents. New treatment strategies are urgently needed. The recent discovery that epigenetic readers of the bromodomain (BRD) and extraterminal (BET) protein family, are crucial for AML maintenance by transcription of oncogenic c-MYC lead to rapid development of BET inhibitors entering clinical trials. Areas covered: We provide a critical overview using main sources for the use of BET inhibitors in AML treatment. Limits of this treatment approach including resistance mechanisms and future directions including development of new generation BET inhibitors and combination strategies with other drugs are detailed. Expert opinion: BET inhibitors were expected to overcome limits of conventional treatment in patients as impressive in vitro data emerged recently in well-characterized AML subsets, including those associated with poor risk characteristics in the clinic. Nevertheless single activity of BET inhibitors appears to be modest and resistance mechanisms were already identified. BET inhibitors with alternative mechanisms of action and/or combination strategies with epigenetic drugs should be tested.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/13543784.2017.1335711 | DOI Listing |
Polymers (Basel)
January 2025
Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Unidad nanoDrug, Departamento de Química Inorgánica, Orgánica y Bioquímica, Universidad de Castilla-La Mancha, 02071 Albacete, Albacete, Spain.
The compounds targeting the bromo and extra terminal domain proteins (BET), such as the JQ1, present potent anti-cancer activity in preclinical models, however, the application of JQ1 at the clinical level is limited by its short half-life, rapid clearance, and non-selective inhibition of BET family proteins, leading to off-target effects and resistance. To address these challenges, the optimization of JQ1 delivery has been accomplished through polylactide (PLA) nanoparticles. PLA derivatives with varying molecular weights were synthesized via ring-opening polymerization using a zinc-based initiator and characterized using thermogravimetric analysis, differential scanning calorimetry, and infrared spectroscopy.
View Article and Find Full Text PDFRev Esp Patol
January 2025
Departamento de Patología, Universidad de Valencia, Hospital Clínico Universitario de Valencia, CIBERONC (ISCIII Madrid), INCLIVA, Valencia, Spain. Electronic address:
High-risk neuroblastoma continues to show a very high mortality, with a 5-year survival rate of 50%. While MYCN amplification is the main genetic alteration associated with high-risk tumours, other molecular mechanisms, such as alterations in ATRX and TERT, remain poorly understood. ATRX and TERT biomarkers, which are associated with a more aggressive neuroblastoma pattern, should be considered for accurate prognostic stratification.
View Article and Find Full Text PDFEur J Med Chem
January 2025
School of Medical and Information Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, PR China; Jiangxi Provincial Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, PR China. Electronic address:
Epigenetic dysregulation plays a pivotal role in the initiation and progression of various cancers, influencing critical processes such as tumor growth, invasion, migration, survival, apoptosis, and angiogenesis. Consequently, targeting epigenetic pathways has emerged as a promising strategy for anticancer drug discovery in recent years. However, the clinical efficacy of epigenetic inhibitors, such as HDAC inhibitors, has been limited, often accompanied by resistance.
View Article and Find Full Text PDFClin Cancer Res
December 2024
Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain.
Purpose: Malignant peripheral nerve sheath tumor (MPNST) is an aggressive soft tissue sarcoma that develops sporadically or in Neurofibromatosis type 1 patients. Its development is marked by the inactivation of specific tumor suppressor genes (TSGs): NF1, CDKN2A and SUZ12EED (Polycomb Repressor Complex 2). Each TSG loss can be targeted by particular drug inhibitors and we aimed to systematically combine these inhibitors, guided by TSG inactivation status, to test their precision medicine potential for MPNSTs.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:
Concurrent inhibition of HDAC and BRD4, two well-established epigenetic targets for anti-tumor therapy, demonstrates the potential to enhance anti-tumor effects synergistically. The present study involves the development of a series of novel HDAC3/BRD4 dual inhibitors, followed by evaluation of their antitumor efficacy against several tumor models. Guided by scaffold hopping strategy, key pharmacophore of BRD4 inhibitor I-BET-151 was incorporated into an in-house developed HDAC3-selective inhibitor 17h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!