There is a substantial need for novel therapeutics to combat the widespread impact caused by Crytosporidium infection. However, there is a lack of knowledge as to which drug pharmacokinetic (PK) characteristics are key to generate an in vivo response, specifically whether systemic drug exposure is crucial for in vivo efficacy. To identify which PK properties are correlated with in vivo efficacy, we generated physiologically based PK models to simulate systemic and gastrointestinal drug concentrations for a series of bumped kinase inhibitors (BKIs) that have nearly identical in vitro potency against Cryptosporidium but display divergent PK properties. When BKI concentrations were used to predict in vivo efficacy with a neonatal model of Cryptosporidium infection, these concentrations in the large intestine were the sole predictors of the observed in vivo efficacy. The significance of large intestinal BKI exposure for predicting in vivo efficacy was further supported with an adult mouse model of Cryptosporidium infection. This study suggests that drug exposure in the large intestine is essential for generating a superior in vivo response, and that physiologically based PK models can assist in the prioritization of leading preclinical drug candidates for in vivo testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5853285PMC
http://dx.doi.org/10.1093/infdis/jix247DOI Listing

Publication Analysis

Top Keywords

vivo efficacy
20
cryptosporidium infection
12
bumped kinase
8
vivo
8
vivo response
8
drug exposure
8
physiologically based
8
based models
8
model cryptosporidium
8
large intestine
8

Similar Publications

Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Breast cancer will overtake all other cancers in terms of diagnoses in 2024. Breast cancer counts highest among women in terms of cancer incidence and death rates. Innovative treatment approaches are desperately needed because treatment resistance brought on by current clinical drugs impedes therapeutic efficacy.

View Article and Find Full Text PDF

Depletion of myeloid-derived suppressor cells sensitizes murine multiple myeloma to PD-1 checkpoint inhibitors.

J Immunother Cancer

January 2025

Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA

Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.

View Article and Find Full Text PDF

Background: Siglec-E is an immune checkpoint inhibitory molecule. Expression of Siglec-E on the immune cells has been shown to promote tumor regression. This study aimed to develop an adenovirus (Ad) vaccine targeting Siglec-E and carbonic anhydrase IX (CAIX) (Ad-Siglec-E/CAIX) and to evaluate its potential antitumor effects in several preclinical renal cancer models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!