Background: Human central nervous system stem cells (HuCNS-SC) are multipotent adult stem cells with successful engraftment, migration, and region-appropriate differentiation after spinal cord injury (SCI).

Objective: To present data on the surgical safety profile and feasibility of multiple intramedullary perilesional injections of HuCNS-SC after SCI.

Methods: Intramedullary free-hand (manual) transplantation of HuCNS-SC cells was performed in subjects with thoracic (n = 12) and cervical (n = 17) complete and sensory incomplete chronic traumatic SCI.

Results: Intramedullary stem cell transplantation needle times in the thoracic cohort (20 M HuCNS-SC) were 19:30 min and total injection time was 42:15 min. The cervical cohort I (n = 6), demonstrated that escalating doses of HuCNS-SC up to 40 M range were well tolerated. In cohort II (40 M, n = 11), the intramedullary stem cell transplantation needle times and total injection time was 26:05 ± 1:08 and 58:14 ± 4:06 min, respectively. In the first year after injection, there were 4 serious adverse events in 4 of the 12 thoracic subjects and 15 serious adverse events in 9 of the 17 cervical patients. No safety concerns were considered related to the cells or the manual intramedullary injection. Cervical magnetic resonance images demonstrated mild increased T2 signal change in 8 of 17 transplanted subjects without motor decrements or emerging neuropathic pain. All T2 signal change resolved by 6 to 12 mo post-transplant.

Conclusion: A total cell dose of 20 M cells via 4 and up to 40 M cells via 8 perilesional intramedullary injections after thoracic and cervical SCI respectively proved safe and feasible using a manual injection technique.

Download full-text PDF

Source
http://dx.doi.org/10.1093/neuros/nyx250DOI Listing

Publication Analysis

Top Keywords

stem cells
12
spinal cord
8
cord injury
8
thoracic cervical
8
intramedullary stem
8
stem cell
8
cell transplantation
8
transplantation needle
8
needle times
8
total injection
8

Similar Publications

One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

An automatic cervical cell classification model based on improved DenseNet121.

Sci Rep

January 2025

Department of Biomedical Engineering, School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China.

The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!