Insular and Ventrolateral Orbitofrontal Cortices Differentially Contribute to Goal-Directed Behavior in Rodents.

Cereb Cortex

CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France.

Published: July 2018

The medial prefrontal cortex (mPFC) has long been considered a critical site in action control. However, recent evidence indicates that the contribution of cortical areas to goal-directed behavior likely extends beyond mPFC. Here, we examine the function of both insular (IC) and ventrolateral orbitofrontal (vlOFC) cortices in action-dependent learning. We used chemogenetics to study the consequences of IC or vlOFC inhibition on acquisition and performance of instrumental actions using the outcome devaluation task. Rats first learned to associate actions with desirable outcomes. Then, one of these outcomes was devalued and we assessed the rats' choice between the 2 actions. Typically, rats will bias their selection towards the action that delivers the still valued outcome. We show that chemogenetic-induced inhibition of IC during choice abolishes goal-directed control whereas inhibition during instrumental acquisition is without effect. IC is therefore necessary for action selection based on current outcome value. By contrast, vlOFC inhibition during acquisition or the choice test impaired goal-directed behavior but only following a shift in the instrumental contingencies. Our results provide clear evidence that vlOFC plays a critical role in action-dependent learning, which challenges the popular idea that this region of OFC is exclusively involved in stimulus-dependent behaviors.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhx132DOI Listing

Publication Analysis

Top Keywords

goal-directed behavior
12
insular ventrolateral
8
ventrolateral orbitofrontal
8
action-dependent learning
8
vlofc inhibition
8
inhibition acquisition
8
orbitofrontal cortices
4
cortices differentially
4
differentially contribute
4
goal-directed
4

Similar Publications

Towards a characterization of human spatial exploration behavior.

Behav Res Methods

January 2025

Department of Child and Adolescent Psychiatry and Psychotherapy, University of Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.

Spatial exploration is a complex behavior that can be used to gain information about developmental processes, personality traits, or mental disorders. Typically, this is done by analyzing movement throughout an unknown environment. However, in human research, until now there has been no overview on how to analyze movement trajectories with regard to exploration.

View Article and Find Full Text PDF

Introduction: , a protein kinase located on human chromosome 21, plays a role in postembryonic neuronal development and degeneration. Alterations to have been consistently associated with cognitive functioning and neurodevelopmental disorders (e.g.

View Article and Find Full Text PDF

Theorists across all fields of psychology consider goals crucial for human action control. Still, the question of how precisely goals are represented in the cognitive system is rarely addressed. Here, we explore the idea that goals are represented as distributed patterns of activation that coexist within continuous mental spaces.

View Article and Find Full Text PDF

Reward Decision Network Disconnection in Poststroke Apathy: A Prospective Multimodality Imaging Study.

Hum Brain Mapp

February 2025

Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Apathy is a common neuropsychiatric symptom following stroke, characterized by reduced goal-directed behavior. The reward decision network (RDN), which plays a crucial role in regulating goal-directed behaviors, is closely associated with apathy. However, the relationship between poststroke apathy (PSA) and RDN dysfunction remains unclear due to apathy heterogeneity, the confounding effect of depression and individual variability in lesion impacts.

View Article and Find Full Text PDF

During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!