We determined the genome sequence of sweet cherry (Prunus avium) using next-generation sequencing technology. The total length of the assembled sequences was 272.4 Mb, consisting of 10,148 scaffold sequences with an N50 length of 219.6 kb. The sequences covered 77.8% of the 352.9 Mb sweet cherry genome, as estimated by k-mer analysis, and included >96.0% of the core eukaryotic genes. We predicted 43,349 complete and partial protein-encoding genes. A high-density consensus map with 2,382 loci was constructed using double-digest restriction site-associated DNA sequencing. Comparing the genetic maps of sweet cherry and peach revealed high synteny between the two genomes; thus the scaffolds were integrated into pseudomolecules using map- and synteny-based strategies. Whole-genome resequencing of six modern cultivars found 1,016,866 SNPs and 162,402 insertions/deletions, out of which 0.7% were deleterious. The sequence variants, as well as simple sequence repeats, can be used as DNA markers. The genomic information helps us to identify agronomically important genes and will accelerate genetic studies and breeding programs for sweet cherries. Further information on the genomic sequences and DNA markers is available in DBcherry (http://cherry.kazusa.or.jp (8 May 2017, date last accessed)).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5737369PMC
http://dx.doi.org/10.1093/dnares/dsx020DOI Listing

Publication Analysis

Top Keywords

sweet cherry
16
genome sequence
8
sequence sweet
8
cherry prunus
8
prunus avium
8
dna markers
8
sweet
5
cherry
4
avium genomics-assisted
4
genomics-assisted breeding
4

Similar Publications

The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.

View Article and Find Full Text PDF

Pathovar Infection Reveals Different Defense Mechanisms in Two Sweet Cherry Cultivars.

Plants (Basel)

December 2024

Facultad de Ciencias Agronómicas, Departamento de Sanidad Vegetal, Universidad de Chile, La Pintana 8820808, Chile.

pv. is the main causal agent of bacterial canker in sweet cherry in Chile, causing significant economic losses. Cultivars exhibit diverse susceptibility in the field and the molecular mechanisms underlying the differential responses remain unclear.

View Article and Find Full Text PDF

Cerasus is a subgenus of Prunus in the family Rosaceae that is popular owing to its ornamental, edible, and medicinal properties. Understanding the evolution of the Cerasus subgenus and identifying selective trait loci in edible cherries are crucial for the improvement of cherry cultivars to meet producer and consumer demands. In this study, we performed a de novo assembly of a chromosome-scale genome for the sweet cherry (Prunus avium L.

View Article and Find Full Text PDF

The Sweet Cherry Tree Genotype Restricts the Aggressiveness of the Wood Decay Fungi and .

Microorganisms

November 2024

Departamento de Sanidad Vegetal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago 8820808, Chile.

The wood decay fungi and severely threaten the worldwide cultivation of sweet cherry trees ( L.). Both fungi cause similar symptoms, including vascular necrosis, which leads to branch and twig dieback.

View Article and Find Full Text PDF

Oviposition Preference and Developmental Performance of on Different Cherry Cultivars.

Insects

December 2024

Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Beijing 100093, China.

is a major pest of sweet cherries. In this study, we evaluated its oviposition preferences across six cherry cultivars and assessed the effects of the fruit traits on its growth and development. Significant differences in the color, firmness, and sugar content were observed among the cultivars and ripeness stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!