Negative Poisson's ratio in 1T-type crystalline two-dimensional transition metal dichalcogenides.

Nat Commun

Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.

Published: May 2017

Materials with a negative Poisson's ratio, also known as auxetic materials, exhibit unusual and counterintuitive mechanical behaviour-becoming fatter in cross-section when stretched. Such behaviour is mostly attributed to some special re-entrant or hinged geometric structures regardless of the chemical composition and electronic structure of a material. Here, using first-principles calculations, we report a class of auxetic single-layer two-dimensional materials, namely, the 1T-type monolayer crystals of groups 6-7 transition-metal dichalcogenides, MX (M=Mo, W, Tc, Re; X=S, Se, Te). These materials have a crystal structure distinct from all other known auxetic materials. They exhibit an intrinsic in-plane negative Poisson's ratio, which is dominated by electronic effects. We attribute the occurrence of such auxetic behaviour to the strong coupling between the chalcogen p orbitals and the intermetal t-bonding orbitals within the basic triangular pyramid structure unit. The unusual auxetic behaviour in combination with other remarkable properties of monolayer two-dimensional materials could lead to novel multi-functionalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458503PMC
http://dx.doi.org/10.1038/ncomms15224DOI Listing

Publication Analysis

Top Keywords

negative poisson's
12
poisson's ratio
12
auxetic materials
8
materials exhibit
8
two-dimensional materials
8
auxetic behaviour
8
materials
6
auxetic
5
ratio 1t-type
4
1t-type crystalline
4

Similar Publications

Foaming ink for 3D-printing of ultralight and hyperelastic graphene architectures: Multiscale design and ultra-efficient electromagnetic interference shielding.

J Colloid Interface Sci

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 515200 China. Electronic address:

Extrusion-based printing of macroscopic architectures layer-by-layer offers new opportunities for constructing customized electromagnetic interference (EMI) shielding materials. However, current research primarily focuses on improving the printability of material inks by increasing contents and adding various modifiers, controllable construction of ultralight and robust macro-architectures with structural design at both macro- and micro-scales is still challenging. Herein, we develop a graphene oxide foaming ink enriched with air bubbles for direct-ink writing, enabling the creation of macroscopic graphene architectures with arbitrary geometries.

View Article and Find Full Text PDF

Two-dimensional (2D) carbon allotropes, together with their binary and ternary counterparts, have attracted substantial research interest due to their peculiar geometries and properties. Among them, grapheneplus, a derivative of penta-graphene, has been proposed to exhibit unusual mechanical and electronic behaviour. In this work, we perform a comprehensive first-principles study on its isoelectronic and isostructural analogue, a grapheneplus-like BCN (gp-BCN) monolayer.

View Article and Find Full Text PDF

When underground tunnels in coal mines traverse geological structurally abnormal zones (faults, collapse columns, fractured zones, etc.), excavation-induced unloading leads to instability and failure of the engineering rock mass. Rock masses in fractured zones are in elastic, plastic, and post-peak stress states, and the process of excavation through these zones essentially involves unloading under full stress paths.

View Article and Find Full Text PDF

The metastable β-Ti21S alloy exhibits a lower elastic modulus than Ti-6Al-4V ELI while maintaining high mechanical strength and ductility. To address stress shielding, this study explores the integration of lattice structures within prosthetics, which is made possible through additive manufacturing. Continuous adhesion between the implant and bone is essential; therefore, auxetic bow-tie structures with a negative Poisson's ratio are proposed for regions under tensile stress, while Triply Periodic Minimal Surface (TPMS) structures with a positive Poisson's ratio are recommended for areas under compressive stress.

View Article and Find Full Text PDF

The significance of this paper is an investigation into the design, development, and optimization of a new polymeric hybrid auxetic structure by additive manufacturing (AM). This work will introduce an innovative class of polymeric hybrid auxetic structure by the integration of an arrow-head unit cell into a missing rib unit cell, which will be fabricated using fused filament fabrication (FFF) technique, that is, one subset of AM. The auxetic performance of the structure is validated through the measurement of its negative Poisson's ratio, confirming its potential for enhanced energy absorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!