Analyzing data with latent spatial and/or temporal structure is a challenge for machine learning. In this paper, we propose a novel nonlinear model for studying data with latent dependence structure. It successfully combines the concepts of Markov random fields, transductive learning, and regression, making heavy use of the notion of joint feature maps. Our transductive conditional random field regression model is able to infer the latent states by combining limited labeled data of high precision with unlabeled data containing measurement uncertainty. In this manner, we can propagate accurate information and greatly reduce uncertainty. We demonstrate the usefulness of our novel framework on generated time series data with the known temporal structure and successfully validate it on synthetic as well as real-world offshore data with the spatial structure from the oil industry to predict rock porosities from acoustic impedance data.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2017.2700429DOI Listing

Publication Analysis

Top Keywords

data latent
12
data
8
latent dependence
8
dependence structure
8
temporal structure
8
structure
5
transductive regression
4
regression data
4
latent
4
structure analyzing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!