The control of the refractive index and electrical conductivity in the dielectric layer of omnidirectional reflectors (ODRs) is essential to improve the low efficiency of AlGaN-based UV emitters. Here, we report self-assembled indium tin oxide (ITO) nanoball-embedded omnidirectional reflectors (NODRs) for use in high-efficiency AlGaN-based UV emitters at 365 nm. These NODRs consisted of a reflective Al layer, a self-assembled conducting ITO nanoball layer for current injection and spreading, and nanovoids that provided a low refractive index to achieve highly efficient UV emitters. The NODR was able to realize both high electrical conductivity and reflectivity by decreasing the average refractive index of the ITO nanoball layers. We observed diffuse reflection as well as omnidirectional reflection from the NODR UV emitters because of the corrugated interfaces of the nanovoids, ITO nanoball layer, and Al layer. These structural and optical properties of the NODRs remarkably increased the output power of a UV emitter by a Lambertian enhancement factor of 57% at an injection current of 50 mA at all emission angles compared with that of an ITO film/Al UV emitter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7nr00957g | DOI Listing |
In this Letter, an omni-directional reflector (ODR) with a thin hybrid dielectric layer (hybrid-ODR) is proposed to enhance the light extraction efficiency (LEE) for inclined-sidewall-shaped AlGaN-based deep ultraviolet light-emitting diode (DUV LED) by inserting a thin diamond with high refraction index into a conventional Al/AlO-based ODR. The three-dimensional finite-difference time-domain (3D FDTD) simulation results show that the LEE of TM-polarized light for the DUV LED with hybrid-ODR is enhanced by 18.5% compared with Al/AlO-based ODR.
View Article and Find Full Text PDFAn efficient photovoltaic power converter is a critical element in laser power beaming systems for maximizing the end-to-end power transfer efficiency while minimizing beam reflections from the receiver for safety considerations. We designed a multilayer absorber that can efficiently trap monochromatic light from broad incident angles. The proposed design is built on the concept of a one-way coherent absorber with inverse-designed aperiodic multilayer front- and back-reflectors that enable maximal optical absorption in a thin-film photovoltaic material for broad angles.
View Article and Find Full Text PDFMicromachines (Basel)
August 2023
Department of Advanced Components and Materials Engineering, Sunchon National University, Suncheon 57922, Republic of Korea.
This study investigated a reflective transparent structure to improve the optical efficiency of 850 nm infrared light-emitting diodes (IR-LEDs), by effectively enhancing the number of extracted photons emitted from the active region. The reflective transparent structure was fabricated by combining transparent epitaxial and reflective bonding structures. The transparent epitaxial structure was grown by the liquid-phase epitaxy method, which efficiently extracted photons emitted from the active area in IR-LEDs, both in the vertical and horizontal directions.
View Article and Find Full Text PDFSensors (Basel)
August 2023
Graduate Program in Electrical Engineering (PPGEE), Institute of Technology (ITEC), Federal University of Pará (UFPA), Rua Augusto Corrêa, 01, Belém 66075-110, PA, Brazil.
A novel graphene antenna composed of a graphene dipole and four auxiliary graphene sheets oriented at 90∘ to each other is proposed and analyzed. The sheets play the role of reflectors. A detailed group-theoretical analysis of symmetry properties of the discussed antennas has been completed.
View Article and Find Full Text PDFSci Rep
November 2022
Graduating Program in Computation Engineering Systems, State University of Maranhão, São Luís, 65000-000, Brazil.
In this work, it is proposed the development a new monopole directional antenna, bioinspired in elliptical leaf, with cut by golden ratio, for 4G band application, by the use of the technique of the cut of the radiating element for the increasing of the antenna perimeter, being the first work to use this technique in a bioinspired antenna, promotes resonance frequency turned, and reconfiguring of the antenna parameters as bandwidth, radiation pattern and gain, with the use of the reflector near to the group plane, without the insertion of active devices as the pin diode or change in radiating element. The shape antenna is generated by Gielis formula, built in FR4 substrate, with cuts calculated by golden ratio. To compare the results of the bioinspired monopole on the elliptical sheet, a square-shaped monopole antenna was designed, simulated and measured, the structures were designed in the MATLAB software version 2015(b) and the simulations were performed in the Ansys software version 2016.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!