Heterostructures formed by LaSrMnO/ZnO (LSMO/ZnO) interfaces exhibit extremely interesting electronic properties making them promising candidates for novel oxide p-n junctions, with multifunctional features. In this work, the structure of the interface is studied through a combined experimental/theoretical approach. Heterostructures were grown epitaxially and homogeneously on 4″ silicon wafers, characterized by advanced electron microscopy imaging and spectroscopy and simulated by ab initio density functional theory calculations. The simulation results suggest that the most stable interface configuration is composed of the (001) face of LSMO, with the LaO planes exposed, in contact with the (112̅0) face of ZnO. The ab initio predictions agree well with experimental high-angle annular dark field scanning transmission electron microscopy images and confirm the validity of the suggested structural model. Electron energy loss spectroscopy confirms the atomic sharpness of the interface. From statistical parameter estimation theory, it has been found that the distances between the interfacial planes are displaced from the respective ones of the bulk material. This can be ascribed to the strain induced by the mismatch between the lattices of the two materials employed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.7b04089DOI Listing

Publication Analysis

Top Keywords

oxide p-n
8
p-n junctions
8
electron microscopy
8
step generation
4
generation c-mos
4
c-mos compatible
4
compatible oxide
4
junctions structure
4
structure lsmo/zno
4
interface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!