Optimization of multi-environment trials for genomic selection based on crop models.

Theor Appl Genet

INRA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, 5 chemin de Beaulieu, 63100, Clermont-Ferrand, France.

Published: August 2017

We propose a statistical criterion to optimize multi-environment trials to predict genotype × environment interactions more efficiently, by combining crop growth models and genomic selection models. Genotype × environment interactions (GEI) are common in plant multi-environment trials (METs). In this context, models developed for genomic selection (GS) that refers to the use of genome-wide information for predicting breeding values of selection candidates need to be adapted. One promising way to increase prediction accuracy in various environments is to combine ecophysiological and genetic modelling thanks to crop growth models (CGM) incorporating genetic parameters. The efficiency of this approach relies on the quality of the parameter estimates, which depends on the environments composing this MET used for calibration. The objective of this study was to determine a method to optimize the set of environments composing the MET for estimating genetic parameters in this context. A criterion called OptiMET was defined to this aim, and was evaluated on simulated and real data, with the example of wheat phenology. The MET defined with OptiMET allowed estimating the genetic parameters with lower error, leading to higher QTL detection power and higher prediction accuracies. MET defined with OptiMET was on average more efficient than random MET composed of twice as many environments, in terms of quality of the parameter estimates. OptiMET is thus a valuable tool to determine optimal experimental conditions to best exploit MET and the phenotyping tools that are currently developed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5511605PMC
http://dx.doi.org/10.1007/s00122-017-2922-4DOI Listing

Publication Analysis

Top Keywords

multi-environment trials
12
genomic selection
12
genetic parameters
12
genotype × environment interactions
8
crop growth
8
growth models
8
quality parameter
8
parameter estimates
8
environments composing
8
composing met
8

Similar Publications

The variability in genetic variance and covariance due to genotype × environment interaction (G×E) can hinder genotype selection accuracy, especially for complex traits. This study analyzed G×E interactions in cassava to identify stable, high-performing genotypes and predict agronomic performance in untested environments using factor analytic multiplicative mixed models (FAMM) within multi-environment trials (METs). We evaluated 22 cassava genotypes for fresh root yield (FRY), dry root yield (DRY), shoot yield (ShY), and dry matter content (DMC) across 55 Brazilian environments.

View Article and Find Full Text PDF

Faba bean is an important legume crop with significant potential to contribute to sustainable agricultural systems and food security in Ethiopia. Despite its importance, the crop is prone to various biotic and abiotic constraints that can reduce seed yield and affect its stability and adaptability. To identify stable and adaptable genotypes, 10 faba bean genotypes were evaluated at three locations over two growing seasons using different stability parameters.

View Article and Find Full Text PDF

Proteomics can be used to assess individual protein abundances, which could reflect genotypic and environmental effects and potentially predict grain/malt quality. In this study, 79 barley grain samples (genotype-location-year combinations) from Californian multi-environment trials (2017-2022) were assessed using liquid chromatography-mass spectrometry. In total, 3104 proteins were identified across all of the samples.

View Article and Find Full Text PDF

In plant breeding, Multi-Environment Trials (METs) evaluate candidate genotypes across various conditions, which is financially costly due to extensive field testing. Sparse testing addresses this challenge by evaluating some genotypes in selected environments, allowing for a broader range of environments without significantly increasing costs. This approach integrates genomic information to adjust phenotypic data, leading to more accurate genetic effect estimations.

View Article and Find Full Text PDF

Rice breeding programs globally have worked to release increasingly productive and climate-smart cultivars, but the genetic gains have been limited for some reasons. One is the capacity for field phenotyping, which presents elevated costs and an unclear approach to defining the number and allocation of multi-environmental trials (MET). To address this challenge, we used soil information and ten years of historical weather data from the USA rice belt, which was translated into rice response based on the rice cardinal temperatures and crop stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!