A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cluster size distribution of spherical nanoparticles in polymer nanocomposites: rheological quantification and evidence of phase separation. | LitMetric

Cluster size distribution of spherical nanoparticles in polymer nanocomposites: rheological quantification and evidence of phase separation.

Soft Matter

Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Published: June 2017

Currently, it is a great challenge to characterize the dispersion quality of nanoparticles in nanocomposites through experimental techniques. In this work, we suggest a new rheological method based on the strain rate amplification effect to determine the cluster size distribution in polymer nanocomposites. The dispersion exponents of nanoparticles from this rheological method are in good agreement with the cluster analysis of transmission electron microscope (TEM) images. We also obtain a critical value of the dispersion exponent from the effective specific surface area of clusters, which separates the well-dispersed state and the phase-separated state. Our results indicate that rheology can be used as a convenient and effective structural analysis method to characterize the nanoparticle cluster size distribution in polymer nanocomposites.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7sm00632bDOI Listing

Publication Analysis

Top Keywords

cluster size
12
size distribution
12
polymer nanocomposites
12
rheological method
8
distribution polymer
8
cluster
4
distribution spherical
4
spherical nanoparticles
4
nanoparticles polymer
4
nanocomposites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!